Today’s Top Space Headline: “Here Come the Star-Trek Voyages” –NASA Will Navigate Deep Space Using Pulsars

 
6a00d8341bf7f753ef01b7c92945c7970b

 

Half a century ago, astronomers observed their first pulsar: a dead, distant, ludicrously dense star that emitted pulses of radiation with remarkable regularity. So consistent was the object's signal that astronomers jokingly nicknamed it LGM-1, short for "little green men."

 


It wasn't long before scientists detected more signals like LGM-1, reports today's Wired. That decreased the odds that these pulses of radiation were the work of intelligent extraterrestrials. But the identification of other pulsars presented another possibility: Perhaps objects like LGM-1 could be used to navigate future missions to deep space. With the right sensors and navigational algorithms, the thinking went, a spacecraft could autonomously determine its position in space by timing the reception of signals from multiple pulsars.

 

 

The concept was so beguiling that, when designing the gold plaques aboard the Pioneer spacecraft, Carl Sagan and Frank Drake chose to map the location of our solar system relative to 14 pulsars. "Even then, people knew that pulsars could act like beacons," says Keith Gendreau, an astrophysicist at NASA’s Goddard Space Flight Center. But for decades, pulsar navigation remained a tantalizing theory—a means of deep space navigation relegated to space opera novellas and episodes of Star Trek.

Then, last week a team of NASA researchers announced that they had finally proven that pulsars can function like a cosmic positioning system. Gendreau and his team performed the demonstration quietly last November, when the Neutron Star Interior Composition Explorer (a pulsar-measuring instrument the size of a washing machine, currently aboard the International Space Station) spent a weekend observing the electromagnetic emissions of five pulsars. With the help of an enhancement known as the Station Explorer for X-ray Timing and Navigation Technology (aka Sextant), Nicer was able to determine the station's position in Earth's orbit to within roughly three miles—while it was traveling in excess of 17,000 miles per hour.

Continue reading..

"The Galaxy" in Your Inbox, Free, Daily