NASA Scientists: On What the Perseverance Mars’ Rocks Return Samples Could Tell Us

Planet Mars

 

“Mars does like to keep its secrets,” Elizabeth Sklute at the Planetary Science Institute, observed in an email to The Daily Galaxy about packing up the first Martian rock samples as the NASA Perseverance Mission begins its sample return mission. “We sent Mossbauer, and found the oxides were nanophase, and that Mossbauer was inconclusive,” Sklute noted. 

“We sent XRD, and found the surface was covered in XRD amorphous materials,” Sklute continued in her email. “It seems that each time we speculate about the composition of the Martian surface, Mars has other ideas. I, therefore, suspend both hope and conjecture on this matter. I try to rid myself of pet theories, for they can grow into formidable and dangerous pests. Instead, I wait with an open mind and many open questions, the most pressing of which is: will the sample that returns to Earth be the same as the sample that left Mars, or is the surface metastable?”

In Mars and the Mind of Man, Ray Bradbury, foreshadowed the goal of the Mars Perseverance Mission when he wrote “We are all … children of this universe. Not just Earth, or Mars, or this system, but the whole grand fireworks. And if we are interested in Mars at all, it is only because we wonder over our past and worry terribly about our possible future.” (A digitized copy of Bradbury’s The Martian Chronicles reached the Red Planet in 2008, aboard NASA’s Phoenix Mars Lander).

 

Detecting the Chemical Fingerprints of Life

On Sept. 1, NASA’s Perseverance rover unfurled its arm, placed a drill bit at the Martian surface, and drilled about 2 inches, or 56 centimeters, down to extract a rock core. The rover later sealed the rock core in its tube. This historic event marked the first time a spacecraft packed up a rock sample from another planet that could be returned to Earth by future spacecraft.

“Bringing back Martian rock samples to labs on Earth gives us the best chance of detecting the chemical fingerprints of life on Mars,” Danny Glavin, Astrobiologist at NASA’s Goddard Space Flight Center, told The Daily Galaxy. “Even if life never existed in Jezero Crater,” he explains, “these samples could teach us about the prebiotic chemistry that led to life on Earth around the same time, ~3.8 billion years ago.”  

Mars Sample Return is a multi-mission campaign designed to retrieve the cores Perseverance will collect over the next several years. Currently in the concept design and technology development phase, the campaign is one of the most ambitious endeavors in spaceflight history, involving multiple spacecraft, multiple launches, and dozens of government agencies.

“Returning a sample from Mars has been a priority for the planetary science community since the 1980s, and the potential opportunity to finally realize this goal has unleashed a torrent of creativity,” said Michael Meyer, lead scientist for NASA’s Mars Exploration Program based at NASA Headquarters in Washington.

 

Mars Core Rock Sample

 

The first cored sample of Mars rock is visible (at center) inside a titanium sample collection tube in this photo from the Sampling and Caching System Camera (known as CacheCam) of NASA’s Perseverance rover. The image was taken on Sept. 6, 2021 (the 194th sol, or Martian day, of the mission), prior to the system attaching and sealing a metal cap onto the tube. Credit: NASA/JPL-Caltech

Using Leading Edge Technologies

The benefit of analyzing samples back on Earth – rather than assigning the task to a rover on the Martian surface – is that scientists can use many kinds of cutting-edge lab technologies that are too big and too complex to send to Mars. And they can do analyses much faster in the lab while providing far more information on whether life ever existed on Mars.

“I have dreamed of having Mars samples to analyze since I was a graduate student,” said Meenakshi Wadhwa, principal scientist for the Mars Sample Return program, which is managed by NASA’s Jet Propulsion Laboratory in Southern California. “The collection of these well-documented samples will eventually allow us to analyze them in the best laboratories here on Earth once they are returned.”

 

A Second Genesis?

Mars Sample Return would involve several firsts aimed at settling an open question: Has life taken root anywhere in the solar system besides Earth? “I’ve been working my whole career for the opportunity to answer this question,” said Daniel Glavin, an astrobiologist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Glavin is helping design systems to protect the Martian samples from contamination throughout their journey from Mars to Earth.

“If life can happen twice, it can surely happen a zillion times,” says astrophysicist Paul Davies in The Demon in the Machine. “And that single alien microbe from early Earth –the hidden shadow biosphere–that may be intermingled with our current genesis.” It doesn’t have to be on some far-flung planet, Davies observed, it could be here on Earth. or on Mars…”upending our vision of the cosmos and mankind’s place within it and greatly boosting the prospect that intelligent life may be out there somewhere.”

The Mars Sample Return developed in collaboration with ESA (the European Space Agency), will require autonomously launching a rocket full of precious extraterrestrial cargo from the surface of Mars. Engineers would need to ensure that the rocket’s trajectory aligns with that of a spacecraft orbiting Mars so the sample capsule could be transferred to the orbiter. The orbiter would then return the sample capsule to Earth, where scientists would be waiting to safely contain it prior to transport to a secure biohazard facility, one that is under development now.

“The Death of Mars” –Did a Pluto-Size Asteroid Ignite Ancient Climate Change?

Protecting Earth From Mars

Keeping samples chemically pristine for rigorous study on Earth while subjecting their storage container to extreme sterilization measures to ensure nothing hazardous is delivered to Earth is a task that makes Mars Sample Return truly unprecedented.

Billions of years ago the Red Planet may have had a cozy environment for life that thrives in warm and wet conditions. However, it’s highly unlikely that NASA will bring back samples with living Martian organisms, based on decades of data from orbiters, landers, and rovers at Mars. Instead, scientists are hoping to find fossilized organic matter or other signs of ancient microbial life.

What Secrets Will Jezero Crater Unveil?

“The Perseverance rover is exploring the remnants of an ancient delta,”   Eldar Noe Dobrea, Senior Scientist at the Planetary Science Institute wrote in an email to The Daily Galaxy about the Jezero Crater landing site.”Delta systems are notorious in terrestrial geology for their ability to concentrate and rapidly bury organic material. We hope that, if ancient life existed on Mars, organic evidence for this life may be found preserved in the sediments of this delta.”

Despite the low risk of bringing anything alive to Earth, an abundance of caution is driving NASA to take significant measures to ensure the Martian samples remain securely sealed throughout their journey. After collecting rock cores throughout Jezero Crater and placing them inside tubes made mostly of titanium, one of the world’s strongest metals, Perseverance tightly seals the tubes to prevent the inadvertent release of even the smallest particle. The tubes are then stored in the rover’s belly until NASA decides on the time and place to drop them on the Martian surface.

 

ESA Sample Fetch Rover

A sample return campaign would include an ESA sample fetch rover that would launch from Earth later this decade to pick up these samples collected by Perseverance. Engineers at NASA’s Glenn Research Center in Cleveland, Ohio, are designing the wheels for the fetch rover. The rover would transfer samples to a lander, being developed at JPL. A robotic arm on the lander would pack the samples into the tip of a rocket that is being designed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.

The rocket would deliver the sample capsule to Martian orbit, where an ESA orbiter would be waiting to receive it. Inside the orbiter, the capsule would be prepared for delivery to Earth by a payload being developed by a team led by NASA Goddard. This preparation would include sealing the sample capsule inside a clean container to trap any Martian material inside, sterilizing the seal, and using a robotic arm being developed at Goddard to place the sealed container into an Earth-entry capsule before the return trip to Earth.

Sterilizing the Samples

One of the primary tasks for NASA engineers is figuring out how to seal and sterilize the sample container without obliterating important chemical signatures in the rock cores inside. Among the techniques the team is currently testing is brazing, which involves melting a metal alloy into a liquid that essentially glues metal together. Brazing can seal the sample container at a temperature high enough to sterilize any dust that might remain in the seam.

“Among our biggest technical challenges right now is that inches away from metal that’s melting at about 1,000 degrees Fahrenheit (or 538 degrees Celsius) we have to keep these extraordinary Mars samples below the hottest temperature they might have experienced on Mars, which is about 86 degrees Fahrenheit (30 degrees Celsius),” said Brendan Feehan, the Goddard systems engineer for the system that will capture, contain, and deliver the samples to Earth aboard ESA’s orbiter. “Initial results from the testing of our brazing solution have affirmed that we’re on the right path.”

“Brazing”

Careful design by Feehan and his colleagues would allow heat to be applied only to where it is needed for brazing, limiting heat flow to the samples. Additionally, engineers could insulate the samples in a material that will absorb the heat and then release it very slowly, or they could install conductors that direct the heat away from the samples.

Whatever technique the team develops will be critical not only for the Martian samples, Glavin said, but for future sample-return missions to Europa or Enceladus, “where we could collect and return fresh ocean plume samples that could contain living extraterrestrial organisms. So we need to figure this out.”

The Last Word

William K. Hartmann, Senior Scientist Emeritus, Planetary Science Institute, wrote in an email to The Daily Galaxy: “Like most researchers I would like to see samples of sedimentary rocks (and clays) from regions where we are sure there was early water, in hopes of being able to determine the extent of organic chemistry on early Mars and whether there if evidence of early microbial or more advanced life on Mars. 

“I’m also interested in a kind of sample that might seem less exciting at first,” Hartmann explained. “I have done a lot of work in my career on developing the method where we count the numbers of asteroid impact craters of various sizes on various geologic formations on the moon and Mars and use that to measure the age of those formations.  We have fairly useful measurements of the crater density (number of craters per square mile) as a function of time on the Earth and moon, but we really need to measure that relationship for Mars.  So  I would like to see some lava samples from a large, moderate age lava flow.  If we could date a middle aged lava flow, perhaps 1 or 2 billion years old (or better yet several flows  of various ages), we could count the craters on those flows and get a good measurement of the Martian crater density as a function of time.  With that information we could date all surface features of Mars and get a much better understanding of the planet’s history,  without even needing to return samples from each area!”

Avi Shporer, Research Scientist, with the MIT Kavli Institute for Astrophysics and Space Research via Jet Propulsion Laboratory and William K. Hartmann, Daniel Glavin, Eldar Noe Dobrea

Image credit top of page: Shutterstock License