Mystery Objects: The Largest Known Population of 'Immortal' Brown Dwarfs Revealed – The Daily Galaxy

Favicon
By Editorial Team Published on August 28, 2021 01:01

Posted on Jun 14, 2022 in Astronomy, Science

It is estimated that up to 60 billion brown dwarfs make their home in the Milky Way. Because these elusive celestial objects do not fuse hydrogen in their core, they spend their lives cooling as they lose that gravitational energy from their formation, morphing as they age from looking like a low-mass star to looking like Jupiter. Every brown dwarf that was ever created still exists because they can’t fuse hydrogen, giving them a calm, sustained existence on the vast timeframe of the cosmos.

Historically, brown dwarfs have been defined as objects with 13 – 80 Jupiter masses that are unable to fuse hydrogen but still massive enough to fuse deuterium, which is an isotope of hydrogen with a single neutron paired with its proton in the nucleus. Recently, however, astronomers suggest a different definition should be applied that encapsulates their formation process or other physical attributes. For example, Jovian planets likely formed from accretion of small planetesimals into a solid core followed by accretion of the surrounding gas, whereas binary stars formed via fragmentation of molecular clouds or their gaseous primordial accretion disks.

In 2018, an international team characterized five companions that were originally identified with the Transiting Exoplanet Survey Satellite (TESS) as TESS objects of interest (TOIs) – TOI-148, TOI-587, TOI-681, TOI-746 and TOI-1213. These are called “companions” because they orbit their respective host stars with periods of 5 to 27 days, but with radii between 0.81 and 1.66 times that of Jupiter and between 77 and 98 Jupiter masses. Hence, these five objects are right on the border of the deuterium vs. hydrogen fusion limits.

The Hubble Survey

The image below  is part of a Hubble Space Telescope 2018 survey for low-mass stars, brown dwarfs, and planets in the Orion Nebula. Each symbol identifies a pair of objects, which can be seen in the symbol’s center as a single dot of light. Special image processing techniques were used to separate the starlight into a pair of objects. The thicker inner circle represents the primary body, and the thinner outer circle indicates the companion. The circles are color-coded: red for a planet; orange for a brown dwarf; and yellow for a star. Located in the upper left corner is a planet-planet pair in the absence of a parent star. In the middle of the right side is a pair of brown dwarfs. The portion of the Orion Nebula measures roughly four by three light-years.
Credits: NASA , ESA, and G. Strampelli (STScI)

Fast Facts About Brown Dwarfs

TESS Discoveries

The artist’s illustration  below represents the five brown dwarfs discovered with the satellite TESS. These objects are all in close orbits of 5-27 days (at least 3 times closer than Mercury is to the sun) around their much larger host stars. © 2021 Creatives Commons Attribution 4.0 International (CC BY-NC-SA 4.0) – Thibaut Roger – UNIGE

Brown dwarfs cool from 3,000 K to only 500 K during the 13.8 billion year age of the Universe. The five newly discovered TOIs are on the hotter side, roughly 2,500 K, due to their close proximity to their host stars. This is still a factor of two lower than the temperature of our sun.

These five new objects contain valuable information about the nature of brown dwarfs. “Each new discovery reveals additional clues about the nature of brown dwarfs and gives us a better understanding of how they form and why they are so rare,” says Monika Lendl, a researcher in the Department of Astronomy at the UNIGE and a member of the NCCR PlanetS.

“It is still unclear what the pathway of formation is for brown dwarfs. Likely they do not form exclusively via one method,” says astrophysicist and dailygalaxy.com editor, Jackie Faherty. “Rather, they may form through the collapse of a molecular cloud which makes stars and alternatively they may form through accretion around a higher mass host which makes planets. These five new objects are bridge sources toward a better understanding of the formation pathways available for substellar mass objects.”

One of the clues the scientists found to show these objects are brown dwarfs is the relationship between their size and age. “Brown dwarfs are supposed to shrink over time as they burn up their deuterium reserves and cool down,” explains François Bouchy, professor at UNIGE and member of the NCCR PlanetS. “Here we found that the two oldest objects, TOI 148 and 746, have a smaller radius, while the two younger companions have larger radii.”

“Even with these additional objects, we still lack the numbers to draw definitive conclusions about the differences between brown dwarfs and low-mass stars. Further studies are needed to find out more,” concludes Grieves. These objects are so close to the limit that they could just as easily be very low-mass stars, and astronomers are still unsure whether they are brown dwarfs.

Source: Nolan Grieves et al, Populating the brown dwarf and stellar boundary: Five stars with transiting companions near the hydrogen-burning mass limit, Astronomy & Astrophysics (2021). DOI: 10.1051/0004-6361/202141145

Image credit: top of page, Brown Dwarf, NASA / JPL-Caltech.

Maxwell Moe, astrophysicist, NASA Einstein Fellow, University of Arizona via Jackie Faherty and University of Geneva

The Galaxy Report newsletter brings you twice-weekly news of space and science that has the capacity to provide clues to the mystery of our existence and add a much needed cosmic perspective in our current Anthropocene Epoch.

Yes, sign me up for my free subscription.

Recent Galaxy Reports:

Unmistakable Signal of Alien Life to What Happens if China Makes First Contact?
Clues to Alien Life to A Galaxy 100 x Size of Milky Way 
Cracks in Einstein’s Theory of Gravity to Colossal Shock Wave Bigger than the Milky Way 
Monster Comet Arriving from the Oort Cloud to Black Hole Apocalypse 
Enigmas of Stephen Hawking’s Blackboard to Why the Universe and Life Exist 
Einstein’s Critics to NASA Theologians Prepare for Alien Contact
Mind-Bending New Multiverse Theory to Dark-Matter Asteroids of the Milky Way 
Mysterious Expanding Regions of Dark Matter to Are Black Holes Holograms


Maxwell Moe, astrophysicist, NASA Einstein Fellow, University of Arizona. Max can be found two nights a week probing the mysteries of the Universe at the Kitt Peak National Observatory. Max received his Ph.D in astronomy from Harvard University in 2015.

No comment on «Mystery Objects: The Largest Known Population of 'Immortal' Brown Dwarfs Revealed – The Daily Galaxy»

Leave a comment

Comments are subject to moderation. Only relevant and detailed comments will be validated. - * Required fields