“Why is There One-Billion Times More Matter than Antimatter in the Universe?”–New Clues Found



“We know empirically that there is about one-billion times more matter than antimatter in the Universe and with the current physics we know, the Standard Model, this imbalance can’t be explained,” wrote MIT physicist Silviu-Marian Udrescu in an email to The Daily Galaxy. “To explain it,” he continues, “a violation of certain fundamental symmetries is required, but we have not observed the required violations yet. We don’t know the sources of this violation. We just know that these violations are required to explain the matter-antimatter asymmetry of the universe. 

“In 1967 Andrei Sakharov, a Russian physicist, proposed three conditions needed for this imbalance to happen, one of which is the violation of the time reversal symmetry, which is equivalent to the violation of another symmetry called charge-parity, or CP,” Udrescu adds. “CP violation was observed experimentally, but the amount of CP violation observed so far is not enough to account for the matter-antimatter imbalance, so new sources of CP violation are expected” 

Researchers at MIT have found that radioactive molecules are sensitive to subtle nuclear phenomena and might help physicists probe this violation of the most fundamental symmetries of nature.

“Imagine a dust particle in a storm cloud,” suggests researchers at  MIT, “and you can get an idea of a neutron’s insignificance compared to the magnitude of the molecule it inhabits. But just as a dust mote might affect a cloud’s track, a neutron can influence the energy of its molecule despite being less than one-millionth its size. 

The effect of a single neutron

Physicists at MIT and elsewhere have successfully measured a neutron’s tiny effect in a radioactive molecule. The team has developed a new technique to produce and study short-lived radioactive molecules with neutron numbers they can precisely control. They hand-picked several isotopes of the same molecule, each with one more neutron than the next. When they measured each molecule’s energy, they were able to detect small, nearly imperceptible changes of the nuclear size, due to the effect of a single neutron.

The fact that they were able to see such small nuclear effects suggests that scientists now have a chance to search such radioactive molecules for even subtler effects, caused by dark matter, for example, or by the effects of new sources of symmetry violations related to some of the current mysteries of the universe.

 A violation of the most fundamental symmetries of physics

“If the laws of physics are symmetrical as we think they are, then the Big Bang should have created matter and antimatter in the same amount. The fact that most of what we see is matter, and there is only about one part per billion of antimatter, means there is a violation of the most fundamental symmetries of physics, in a way that we can’t explain with all that we know,” says Ronald Fernando Garcia Ruiz, assistant professor of physics at MIT.

“Now we have a chance to measure these symmetry violations, using these heavy radioactive molecules, which have extreme sensitivity to nuclear phenomena that we cannot see in other molecules in nature,” he says. “That could provide answers to one of the main mysteries of how the universe was created.”

Shape distortion

Most atoms in nature host a symmetric spherical nucleus, with neutrons and protons evenly distributed throughout. But in certain radioactive elements like radium, atomic nuclei are weirdly pear-shaped, with an uneven distribution of neutrons and protons within. Physicists hypothesize that this shape distortion can enhance the violation of symmetries that gave origin to the matter in the universe.

“Radioactive nuclei could allow us to easily see these symmetry-violating effects,” says Udrescu. “The disadvantage is, they’re very unstable and live for a very short amount of time, so we need sensitive methods to produce and detect them, fast.”

Rather than attempt to pin down radioactive nuclei on their own, the team placed them in a molecule that further amplifies the sensitivity to symmetry violations. Radioactive molecules consist of at least one radioactive atom, bound to one or more other atoms. Each atom is surrounded by a cloud of electrons that together generate an extremely high electric field in the molecule that physicists believe could amplify subtle nuclear effects, such as effects of symmetry violation.

The radioactive molecules of interest do not exist in nature

However, aside from certain astrophysical processes, such as merging neutron stars, and stellar explosions, the radioactive molecules of interest do not exist in nature and therefore must be created artificially. Garcia Ruiz and his colleagues have been refining techniques to create radioactive molecules in the lab and precisely study their properties. Last year, they reported on a method to produce molecules of radium monofluoride, or RaF, a radioactive molecule that contains one unstable radium atom and a fluoride atom.

In their new study, the team used similar techniques to produce RaF isotopes, or versions of the radioactive molecule with varying numbers of neutrons. As they did in their previous experiment, the researchers utilized the Isotope mass Separator On-Line, or ISOLDE, facility at CERN, in Geneva, Switzerland, to produce small quantities of RaF isotopes.

A zoo of molecules

The facility houses a low-energy proton beam, which the team directed toward a target — a half-dollar-sized disc of uranium-carbide, onto which they also injected a carbon fluoride gas. The ensuing chemical reactions produced a zoo of molecules, including RaF, which the team separated using a precise system of lasers, electromagnetic fields, and ion traps.

The researchers measured each molecule’s mass to estimate of the number of neutrons in a molecule’s radium nucleus. They then sorted the molecules by isotopes, according to their neutron numbers.

In the end, they sorted out bunches of five different isotopes of RaF, each bearing more neutrons than the next. With a separate system of lasers, the team measured the quantum levels of each molecule.

One neutron is 10 million times smaller than a molecule

“Imagine a molecule vibrating like two balls on a spring, with a certain amount of energy,” explains Udrescu, who is a graduate student of MIT’s Laboratory for Nuclear Science. “If you change the number of neutrons in one of these balls, the amount of energy could change. But one neutron is 10 million times smaller than a molecule, and with our current precision we didn’t expect that changing one would create an energy difference, but it did. And we were able to clearly see this effect.”

Like Mount Everest, placed on the surface of the sun

Udrescu compares the sensitivity of the measurements to being able to see how Mount Everest, placed on the surface of the sun, could, however minutely, change the sun’s radius. By comparison, seeing certain effects of symmetry violation would be like seeing how the width of a single human hair would alter the sun’s radius.

Radioactive molecules are ultrasensitive to nuclear effects 

The results demonstrate that radioactive molecules such as RaF are ultrasensitive to nuclear effects and that their sensitivity may likely reveal more subtle, never-before-seen effects, such as tiny symmetry-violating nuclear properties, that could help to explain the universe’s matter-antimmatter asymmetry.

“These very heavy radioactive molecules are special and have sensitivity to nuclear phenomena that we cannot see in other molecules in nature,” Udrescu says. “This shows that, when we start to search for symmetry-violating effects, we have a high chance of seeing them in these molecules.”

The Daily Galaxy, Avi Shporer, MIT Kavli Institute for Astrophysics and Space Research via MIT News and Silviu-Marian Udrescu. Avi was formerly aNASA Sagan Fellow at the Jet Propulsion Laboratory (JPL).

Image credit: Shutterstock License


THe Galaxy Report

Your free twice-weekly fix of  stories of space and science –a random journey from Planet Earth through the Cosmos– that has the capacity to provide clues to our existence and add a much needed cosmic perspective in our Anthropocene epoch.

Yes, Sign Me Up for “The Galaxy Report” Newsletter