“A Great Mystery to Be Solved” –AI Simulates the Universe and Dark Matter in 30 Milliseconds (Weekend Feature)

 

Artificial Intelligence

 

Stephen Hawking warned before his death on March 14, 2018, that “the real risk with AI isn’t malice, but competence.” Hawking foreshadowed the big surprise to astrophysicists, who in 2019 used artificial intelligence  Deep Density Displacement Model, or D3M for short, to generate complex 3-D simulations of the universe in an amazing 30 milliseconds, including how much of the cosmos is dark matter.

Even the creators aren’t sure how it all works

The real shock was that D3M could accurately simulate how the universe would look if certain parameters were tweaked even though the model had never received any training data where those parameters varied. The results are so fast, accurate and robust that even the creators aren’t sure how it all works.

“We can run these simulations in a few milliseconds, while other ‘fast’ simulations take a couple of minutes,” said study co-author Shirley Ho, a group leader at the Flatiron Institute Center for Computational Astrophysics in New York City and an adjunct professor at Carnegie Mellon University. “Not only that, but we were much more accurate.”

Stephen Hawking’s Warning –“Treating AI as Science Fiction Would Potentially Be Our Worst Mistake Ever”

“It’s a great mystery to be solved”

“It’s like teaching image recognition software with lots of pictures of cats and dogs, but then it’s able to recognize elephants,” Ho explains. “Nobody knows how it does this, and it’s a great mystery to be solved.”

“If we can’t figure out why AIs do what they do, why don’t we ask them? We can endow them with metacognition.”

In a recent article in Nautilus, neuroscientist Ryota Kanai suggests that if consciousness is an important function for us. Why not for our machines? If we can’t figure out why AIs do what they do, why don’t we ask them? We can endow them with metacognition.”

Ho and her colleagues presented  D3M June 24, 2019 in the Proceedings of the National Academy of Sciences. The study was led by Siyu He, a Flatiron Institute research analyst.

Computer simulations like those made by D3M have become essential to theoretical astrophysics. Scientists want to know how the cosmos might evolve under various scenarios, such as if the dark energy pulling the universe apart varied over time. Such studies require running thousands of simulations, making a lightning-fast and highly accurate computer model one of the major objectives of modern astrophysics.

D3M models how gravity shapes the universe. The researchers opted to focus on gravity alone because it is by far the most important force when it comes to the large-scale evolution of the cosmos.

 

 

Simulating the Universe

The most accurate universe simulations calculate how gravity shifts each of billions of individual particles over the entire age of the universe. That level of accuracy takes time, requiring around 300 computation hours for one simulation. Faster methods can finish the same simulations in about two minutes, but the shortcuts required result in lower accuracy.

Ho, He and their colleagues honed the deep neural network that powers D3M by feeding it 8,000 different simulations from one of the highest-accuracy models available. Neural networks take training data and run calculations on the information; researchers then compare the resulting outcome with the expected outcome. With further training, neural networks adapt over time to yield faster and more accurate results.

After training D3M, the researchers ran simulations of a box-shaped universe 600 million light-years across and compared the results to those of the slow and fast models. Whereas the slow-but-accurate approach took hundreds of hours of computation time per simulation and the existing fast method took a couple of minutes, D3M could complete a simulation in 30 milliseconds.

D3M also churned out accurate results. When compared with the high-accuracy model, D3M had a relative error of 2.8 percent. Using the same comparison, the existing fast model had a relative error of 9.3 percent.

D3M’s remarkable ability to handle parameter variations not found in its training data makes it an especially useful and flexible tool, Ho said. In addition to modeling other forces, such as hydrodynamics, Ho’s team hopes to learn more about how the model works under the hood. Doing so could yield benefits for the advancement of artificial intelligence and machine learning, Ho says.

“We can be an interesting playground for a machine learner to use to see why this model extrapolates so well, why it extrapolates to elephants instead of just recognizing cats and dogs,” she says. “It’s a two-way street between science and deep learning.”

However, warned Stephen Hawking who was buried next to Isaac Newton, “We should plan ahead. If a superior alien civilization sent us a text message saying, ‘We’ll arrive in a few decades,’ would we just reply, ‘OK, call us when you get here, we’ll leave the lights on’? Probably not, but this is more or less what has happened with AI.”

The Daily Galaxy, Avi Shporer, Research Scientist, MIT Kavli Institute for Astrophysics and Space Research via Simons Foundation. Avi was formerly a NASA Sagan Fellow at the Jet Propulsion Laboratory (JPL).

Image credit at the top of the page: Shutterstock License

 

THe Galaxy Report

The Galaxy Report newsletter brings you twice-weekly news of space and science that has the capacity to provide clues to the mystery of our existence and add a much needed cosmic perspective in our current Anthropocene Epoch.

Yes, sign me up for my free subscription.

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *