Milky Way’s Emerging Behemoth — “Our Supermassive Black Hole Will Grow to 25 Times Its Present Size”


Supermassive Black Hole


New research suggests that in massive galaxies, the central black hole –a strange galactic monster, for which creation is destruction, death is life, and chaos is order – is like a parasite that ultimately grows and kills off star formation. Although many theories have been proposed to explain this process, known as “quenching,” a new study concludes that the growth rate of black holes must change as galaxies evolve from one stage to the next., Suggesting that most of the black hole growth occurs in the “green valley” when galaxies are beginning to quench.

This has been observed before, “but we haven’t had clear rules to say when a black hole is big enough to shut down star formation in its host galaxy, and now we have quantitative rules that actually work to explain our observations,” said Sandra Faber, professor emerita of astronomy and astrophysics at UC Santa Cruz.

Scaling Laws –The “Green Valley” Transition

Astronomers are accustomed to thinking in terms of diagrams that plot the relations between different properties of galaxies and show how they change over time. These diagrams reveal the dramatic differences in structure between star-forming and quenched galaxies and the sharp boundaries between them. Because star formation emits a lot of light at the blue end of the color spectrum, astronomers refer to “blue” star-forming galaxies, “red” quiescent galaxies, and the “green valley” as the transition between them. Which stage a galaxy is in is revealed by its star formation rate.

Andromeda’s “Green Valley”

Among the puzzles explained by this new model is a striking difference between our Milky Way  and its neighbor, the Andromeda galaxy, with whom it will one day merge. “The Milky Way and Andromeda have almost the same stellar mass, but Andromeda’s black hole is almost 50 times bigger than the Milky Way’s,” Faber said. “The idea that black holes grow a lot in the green valley goes a long way toward explaining this mystery.”

The Big Question –“How Does a Galaxy Goes from Being Star-forming to Dormant”

 “Suppressed star formation tells us that a galaxy is dying, sadly, but that is exactly the kind of galaxy we want to study in detail to understand why it dies”, says Francesco Valentino  at the  Niels Bohr Institute. One of the biggest questions that astrophysics still has not answered is how a galaxy goes from being star-forming to being dormant. For instance, the Milky Way is still active and slowly forming new stars, but not too far away (in astronomical terms), the central galaxy of the Virgo cluster – M87 – is dead and completely different. Why is that? “It might have to do with the presence of gigantic and active black holes at the center of galaxies like M87” Valentino adds.

“Dead or Alive?” –Postmortem of Gigantic Galaxies at Dawn of the Cosmos

Milky Way’s “Green Valley” Phase –Where Will It Lead To?

The Milky Way is just entering the green valley — a zone where galaxies move from active to dormant —  and its black hole is still small relatively speaking., Whereas Andromeda is just exiting the green valley so its black hole has grown much bigger, and it is also more quenched than the Milky Way.

Sagittarius A* will Grow to 25 Times Its Current Size 

“We can project the future size of the Milky Way’s supermassive black hole using the rules for black-hole  growth proposed in our paper, How Galaxies Die, in 2021,” wrote Faber in reply to an email from The Daily Galaxy asking if our Galaxy’s supermassive black hole, Sagittarius A*, will grow larger in its Green Valley” phase. “Roughly, our Galaxy’s black hole will grow to be the size of the Andromeda supermassive black hole today, which is significantly larger, at 2 x 10^8 the mass of our Sun,” Faber added. “But Andromeda seems to be a little bit denser in the middle than our Milky Way, and so I would correct that first mass estimate downward to about 10^8 mass of the sun, even.  That would be a growth of 25 times it current size.” 

The new model supports one of the leading ideas about quenching which attributes it to black hole “feedback” the energy released into a galaxy and its surroundings from a central supermassive black hole as matter falls into the black hole and feeds its growth. This energetic feedback heats, ejects, or otherwise disrupts the galaxy’s gas supply, preventing the infall of gas from the galaxy’s halo to feed star formation.


The basic idea involves the relationship between the mass of the stars in a galaxy (stellar mass), how spread out those stars are (the galaxy’s radius), and the mass of the central black hole. For star-forming galaxies with a given stellar mass, the density of stars in the center of the galaxy correlates with the radius of the galaxy so that galaxies with bigger radii have lower central stellar densities. Assuming that the mass of the central black hole scales with the central stellar density, star-forming galaxies with larger radii (at a given stellar mass) will have lower black-hole masses.

What that means, Faber explained, is that larger galaxies (those with larger radii for a given stellar mass) have to evolve further and build up a higher stellar mass before their central black holes can grow large enough to quench star formation. Thus, small-radius galaxies quench at lower masses than large-radius galaxies.

The images on the graph below, taken by the Sloan Digital Sky Survey, are of nearby galaxies at the present era chosen to represent galaxy evolution. The graph shows how the evolution of small, dense galaxies differs from that of larger, more diffuse galaxies.

Galaxy Growth


“That is the new insight, that if galaxies with large radii have smaller black holes at a given stellar mass, and if black hole feedback is important for quenching, then large-radius galaxies have to evolve further,” Faber said. “If you put together all these assumptions, amazingly, you can reproduce a large number of observed trends in the structural properties of galaxies.”

Larger SMBHs of Massive Quenched Galaxies 

This explains, for example, why more massive quenched galaxies have higher central stellar densities, larger radii, and larger central black holes.

Based on this model, the researchers concluded that quenching begins when the total energy emitted from the black hole is approximately four times the gravitational binding energy of the gas in the galactic halo. The binding energy refers to the gravitational force that holds the gas within the halo of dark matter enveloping the galaxy. Quenching is complete when the total energy emitted from the black hole is twenty times the binding energy of the gas in the galactic halo.

Faber emphasized that the model does not yet explain in detail the physical mechanisms involved in the quenching of star formation. “The key physical processes that this simple theory evokes are not yet understood,” she said. “The virtue of this, though, is that having simple rules for each step in the process challenges theorists to come up with physical mechanisms that explain each step.”

“The black hole seems to be unleashed just as star formation slows down,” Faber said. “This was a revelation, because it explains why black hole masses in star-forming galaxies follow one scaling law, while black holes in quenched galaxies follow another scaling law. That makes sense if black hole mass grows rapidly while in the green valley.”

Candels Data

Faber and her collaborators have been discussing these issues for many years. Since 2010, Faber co-led a major Hubble Space Telescope galaxy survey program (CANDELS, the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), which produced the data used in the study. In analyzing the CANDELS data, she has worked closely with a team led by Joel Primack, UCSC professor emeritus of physics, which developed the Bolshoi cosmological simulation of the evolution of the dark matter halos in which galaxies form. These halos provide the scaffolding on which the theory builds the early star-forming phase of galaxy evolution before quenching.

The central ideas in the paper emerged from analyses of CANDELS data and first struck Faber about four years ago. “It suddenly leaped out at me, and I realized if we put all these things together–if galaxies had a simple trajectory in radius versus mass, and if black hole energy needs to overcome halo binding energy–it can explain all these slanted boundaries in the structural diagrams of galaxies,” she said.

Avi Shporer with the MIT Kavli Institute for Astrophysics and Space Research via
UC Santa Cruz and Sandra Faber as well as the Neils Bohr Institute

Image credit top of page: Shutterstock License








Leave a Reply

Your email address will not be published.