Is Dark Matter and Dark Energy a Fluid?

Dark Energy


“We now think that both dark matter and dark energy can be unified into a fluid which possesses a type of ‘negative gravity’, repelling all other material around them,” said Jamie Farnes from the Oxford University e-Research Center in 2018 about the what is perhaps the great unsolved mystery of  the Universe. “The outcome seems rather beautiful: dark energy and dark matter can be unified into a single substance, with both effects being simply explainable as positive mass matter surfing on a sea of negative masses.”

Negative Mass

Scientists at the University of Oxford thought they might have solved one of the biggest questions in modern physics, with a paper unifying dark matter and dark energy into a single phenomenon: a fluid which possesses ‘negative mass’. If you were to push a negative mass, it would accelerate towards you. This astonishing new theory may also confirm a prediction that Einstein made some 100 years ago.

The current, widely recognized model of the Universe, called LambdaCDM (ΛCDM), tells us nothing about what dark matter and dark energy are like physically. We only know about them because of the gravitational effects they have on other, observable matter.

The existence of negative matter had previously been ruled out as it was thought this material would become less dense as the Universe expands, which runs contrary to our observations that show dark energy does not thin out over time.

The Great Unknown –Is Dark Energy New Exotic Matter or an ET Force Field?

A ‘Creation Tensor’

However, Farnes’ research applies a ‘creation tensor’, which allows for negative masses to be continuously created. It demonstrates that when more and more negative masses are continually bursting into existence, this negative mass fluid does not dilute during the expansion of the cosmos. In fact, the fluid appears to be identical to dark energy.

Predicts Behavior of Dark Matter Halos

Farnes’s theory also provides the first correct predictions of the behavior of dark matter halos. Most galaxies are rotating so rapidly they should be tearing themselves apart, which suggests that an invisible ‘halo’ of dark matter must be holding them together. The new research published today features a computer simulation of the properties of negative mass, which predicts the formation of dark matter halos just like the ones inferred by observations using modern radio telescopes.

Einstein’s Hint of a Dark Universe

Albert Einstein provided the first hint of the dark universe exactly 100 years ago, when he discovered a parameter in his equations known as the ‘cosmological constant’, which we now know to be synonymous with dark energy. Einstein famously called the cosmological constant his ‘biggest blunder’, although modern astrophysical observations prove that it is a real phenomenon. In notes dating back to 1918, Einstein described his cosmological constant, writing that ‘a modification of the theory is required such that “empty space” takes the role of gravitating negative masses which are distributed all over the interstellar space.’ It is therefore possible that Einstein himself predicted a negative-mass-filled universe.

“Dark Energy Originates from a Vast Sea of Objects Spread Throughout Cosmic Voids”

“Previous approaches to combining dark energy and dark matter have attempted to modify Einstein’s theory of general relativity, which has turned out to be incredibly challenging,” says Farnes. “This new approach takes two old ideas that are known to be compatible with Einstein’s theory – negative masses and matter creation – and combines them together.”

NASA –”What is Needed is More Data”

That dark energy is a new kind of dynamical energy fluid or field, something that fills all of space but something whose effect on the expansion of the universe, says NASA, is the opposite of that of matter and normal energy. Some theorists NASA reports have named this “quintessence,” after the fifth element of the Greek philosophers. But, if quintessence is the answer, we still don’t know what it is like, what it interacts with, or why it exists. So the mystery continues. “The thing that is needed to decide between dark energy possibilities – a property of space, a new dynamic fluid, or a new theory of gravity,” suggests NASA, “is more data, better data.”

Will the Square Kilometer Array Provide the Data?

Proof of Farnes’s theory will come from tests performed with a cutting-edge radio telescope known as the Square Kilometer Array (SKA), an international endeavor to build the world’s largest telescope in which the University of Oxford is collaborating.

“Dark Matter is a Mythical Beast” –A Figment of Our Ignorance

“There are still many theoretical issues and computational simulations to work through, and LambdaCDM has a nearly 30 year head start, but I’m looking forward to seeing whether this new extended version of LambdaCDM can accurately match other observational evidence of our cosmology,” concludes Farnes. “If real, it would suggest that the missing 95% of the cosmos had an aesthetic solution: we had forgotten to include a simple minus sign.”

Avi Shporer, Research Scientist, MIT Kavli Institute for Astrophysics and Space Research via University of Oxford and NASA. Avi was formerly a NASA Sagan Fellow at the Jet Propulsion Laboratory (JPL)

Image credit: Dark Energy, Shutterstock License



Leave a Reply

Your email address will not be published.