Posted on Aug 10, 2020 in Astronomy, Science
Our solar system’s ice giants are bizarre worlds of extremes… if you were born at one of Uranus’s poles, for example, you would be middle-aged at sunset and a very old, 84-year old before it was time for a second sunrise and by the time of a second dawn on Neptune (above), a dark, cold world, whipped by supersonic winds that can reach up 1,500 miles per hour, you would be 165. But their real stories going back billions of years, lie locked in their water.
“Hydrogen and oxygen are the most common elements in the Universe, together with helium. It is easy to deduce that water is one of the major constituents of many celestial bodies. Ganymede and Europe, satellites of Jupiter, and Enceladus, satellite of Saturn, present icy surfaces beneath which oceans of water lie. Neptune and Uranus are also probably composed primarily of water”, say Federico Grasselli and Stefano Baroni –scientists from SISSA in Trieste and UCLA whom have paved the way to modelling the interior of the ice giants Uranus and Neptune, thanks to computer simulations on their water at microscopic scales to unlock stories going back billions of years.
“Gargantuan Icy Impact” –Created the Mystery Planet We Call Uranus
New Theoretical Method
A new theoretical method allows them to analyse thermal and electric processes occurring at physical conditions that are often impossible to reproduce experimentally, with a much easier and low-cost approach. In this research, the scholars have analysed the conduction of electricity and heat of water under extreme temperature and pressure conditions, such as those that occur inside ice-giant planets as well as in many exoplanets outside of it. Investigating the phenomena that occur under their surface, in fact, is key to understand the evolution of these celestial bodies, to establish their age, and to shed light onto the geometry and evolution of their magnetic fields.
“A Very Strange World” –Neptune’s Mystery Moon Triton
“Our knowledge of planetary interiors” – they add – “is based on the features of the planet’s surface and magnetic field, which are themselves influenced by the physical characteristics of their internal structure, like the transport of energy, mass and charge through the internal intermediate layers. That is why we have developed a theoretical and computational method to compute the thermal and electrical conductivity of water, in the phases and conditions occurring in such celestial bodies, starting from cutting-edge simulations on the microscopic dynamics of some hundreds of atoms and incorporating the quantum nature of electrons without any further ad-hoc approximation. By simulating the atomic scale for fractions of a nanosecond, we are able to understand what has happened to enormous masses on time scales of billions of years.”
Superionic –“Not the Ice or Water We’re Used To on Earth”
The scholars analysed three different phases of water: ice, liquid, and superionic, under the extreme temperature-and-pressure conditions typical of the internal layers of these planets. Black, hot, Superionic ice is a bizarre form of water that might comprise the bulk of giant icy planets throughout the universe.
The discovery of superionic ice, reports Joshua Skokol for Quanta who was not involved in the study, first theoretically predicted more than 30 years ago, “potentially solves the puzzle of what giant icy planets like Uranus and Neptune are made of. They’re now thought to have gaseous, mixed-chemical outer shells, a liquid layer of ionized water below that, a solid layer of superionic ice comprising the bulk of their interiors, and rocky centers.”
“It’s Really a New State of Matter”
Superionic ice not quite a new phase of water says physicist Livia Bove of France’s National Center for Scientific Research and Pierre and Marie Curie University, “It’s really a new state of matter,” she said, “which is rather spectacular.”
Grasselli and Baroni explain: “In such exotic physical conditions, we cannot think of ice as we are used to. Even water is actually different, denser, with several molecules dissociated into positive and negative ions, thus carrying an electrical charge.
Neptune’s “Great Dark Spot” –‘Jupiter Now has an Earth-Sized Rival’
Superionic water lies somewhere between the liquid and solid phases: the oxygen atoms of the H2O molecule are organised in a crystalline lattice, while hydrogen atoms diffuse freely like in a charged fluid”. The study of thermal and electrical currents generated by the water in these three different forms is essential to shed light on many unsolved issues.
Existence of a Frozen Core
The two scientists also state that “internal electrical currents are at the base of the Planet’s magnetic field. If we understand how the former flow, we can learn a lot more about the latter”. And not only that. “The thermal and electrical transport coefficients dictate the planet’s history, how and when it was formed, how it cooled down. It is therefore crucial to analyse them with the appropriate tools, like the one we have developed. In particular, the heat conduction properties that emerge from our study allow us to hypothesize that the existence of a frozen core may explain the anomalously low luminosity of Uranus as due to an extremely low heat flux from its interior towards the surface.”
Furthermore, the electrical conductivity found for the superionic phase is far larger than assumed in previous models of magnetic field generation in Uranus and Neptune. Since superionic water is thought to dominate the dense and sluggish planetary layers below the convective fluid region where their magnetic field is generated, this new evidence could have a great impact on the study of the geometry and evolution of the magnetic fields of the two planets.
The Daily Galaxy, Sam Cabot, via SISSA and Quanta
Image credit: NASA/JPL
Read about The Daily Galaxy editorial team here