“Heading Towards Earth” –Strange ‘Red Flag’ Phenomena at Milky Way’s Center


Milky Way Center


To determine the amount of energy or radiation at the center of the Milky Way, researchers had to peer through a galaxy packed with more than 200 billion stars and harbors dark patches of interstellar dust and gas. University of Wisconsin-Whitewater professor Bob Benjamin—a leading expert on the structure of stars and gas in the Milky Way– was taking a look at two decades’ worth of data when he spotted a scientific red flag —a peculiar shape poking out of the Milky Way’s dark, dusty center rippling with highly-energized ionized hydrogen moving in the direction of Earth.

The oddity was ionized hydrogen gas, which appears red when captured through the Wisconsin H-Alpha Mapper (WHAM) , a telescope based in Chile that was used for the team’s latest study. The WHAM group is studying one important component of the interstellar medium (ISM) in our own Milky Way –where does the energy produced in the star-forming regions of our Galaxy go.

Knowing how much energy permeates the center of the Milky Way—a discovery reported in the July 3 edition of the journal Science Advances—could yield new clues to the fundamental source of our galaxy’s power, said L. Matthew Haffner of Embry-Riddle Aeronautical University.

A new image at the top of the page shows the Milky Way’s violent center spanning a distance of more than 600 light-years, revealing details within the dense swirls of gas and dust in high resolution, opening the door to future research into how massive stars are forming and what’s feeding the supermassive black hole at our galaxy’s core.

Mystery Object at Milky Way Center –A Failed Star or Massive Unknown Planet?

The position of the feature—known to scientists as the “Tilted Disk” because it looks tilted compared with the rest of the Milky Way—couldn’t be explained by known physical phenomena such as galactic rotation. The team had a rare opportunity to study the protruding Tilted Disk, a portion behind Baade’s Window, a hole in the thick dust near the Galactic center with one of the few lines-of-sight is not obscured by dust. In the image below , the region around the bright globular cluster, NGC6522 (center), is surrounded by dark lanes of obscuring dust.


Baades Window

Liberated from its usual patchy dust cover, by using optical light, the Tilted Disk can be studied with infrared or radio light techniques, which allow researchers to make observations through the dust, but limit their ability to learn more about ionized gas.

“Being able to make these measurements in optical light allowed us to compare the nucleus of the Milky Way to other galaxies much more easily,” Haffner said. “Many past studies have measured the quantity and quality of ionized gas from the centers of thousands of spiral galaxies throughout the universe. For the first time, we were able to directly compare measurements from our Galaxy to that large population.”

Optical Milky Way image with Hα emission line ratio associated with the Tilted Disk. (Axel Mellinger)


"Heading Towards Earth" --Unknown 'Red Flag' Phenomena at Milky Way's Dark Center (Weekend Feature)


Krishnarao leveraged an existing model to try and predict how much ionized gas should be in the emitting region that had caught Benjamin’s eye. Raw data from the WHAM telescope allowed him to refine his predictions until the team had an accurate 3-D picture of the structure. Comparing other colors of visible light from hydrogen, nitrogen and oxygen within the structure gave researchers further clues to its composition and properties.

At least 48 percent of the hydrogen gas in the Tilted Disk at the center of the Milky Way has been ionized by an unknown source, the team reported. “The Milky Way can now be used to better understand its nature,” Krishnarao said.

Giant Blinking Star Hidden By an Unknown Object Detected at Milky Way Center 

The gaseous, ionized structure changes as it moves away from the Milky Way’s center, researchers reported. Previously, scientists only knew about the neutral (non-ionized) gas located in that region.

“Close to the nucleus of the Milky Way,” astronomer “DK” Krishnarao explained, “gas is ionized by newly forming stars, but as you move further away from the center, things get more extreme, and the gas becomes similar to a class of galaxies called LINERs, or low ionization (nuclear) emission regions.”

The structure appeared to be moving toward Earth because it was on an elliptical orbit interior to the Milky Way’s spiral arms, researchers found.

LINER-type galaxies such as the Milky Way make up roughly a third of all galaxies. They have centers with more radiation than galaxies that are only forming new stars, yet less radiation than those whose supermassive black holes are actively consuming a tremendous amount of material.

“Before this discovery by WHAM, the Andromeda Galaxy was the closest LINER spiral to us,” said Haffner. “But it’s still millions of light-years away. With the nucleus of the Milky Way only tens of thousands of light-years away, we can now study a LINER region in more detail. Studying this extended ionized gas should help us learn more about the current and past environment in the center of our Galaxy.”

Next up, researchers will need to figure out the source of the energy at the center of the Milky Way. Being able to categorize the galaxy based on its level of radiation was an important first step toward that goal.

Now that Haffner has joined Embry-Riddle’s growing Astronomy & Astrophysics program, he and his colleague Edwin Mierkiewicz, associate professor of physics, have big plans. “In the next few years, we hope to build WHAM’s successor, which would give us a sharper view of the gas we study,” Haffner said. “Right now our map `pixels’ are twice the size of the full moon. WHAM has been a great tool for producing the first all-sky survey of this gas, but we’re hungry for more details now.”

In separate research, Haffner and his colleagues earlier this month reported the first-ever visible-light measurements of “Fermi Bubbles”—mysterious plumes of light that bulge from the center of the Milky Way. That work was presented at the American Astronomical Society.

More information: D. Krishnarao el al., “Discovery of diffuse optical emission lines from the inner Galaxy: Evidence for LI(N)ER-like gas,” Science Advances (2020). advances.sciencemag.org/lookup

THe Daily Galaxy, Sam Cabot, via Embry-Riddle Aeronautical University and Harvard University

Image credit: Optical Milky Way image. Credit: Axel Mellinger

Leave a Reply

Your email address will not be published.