The Higgs Boson –“Gateway” to the Dark Universe?

Higgs Field


The cosmos contains a Higgs field—similar to an electric field—generated by Higgs bosons in the vacuum. Particles interact with the field to gain energy and, through Albert Einstein’s iconic equation, E=mc2, mass.The Standard Model of particle physics, although successful at describing elementary particles and their interactions at low energies, does not include a viable and hotly debated dark-matter particle. The only possible candidates, neutrinos, do not have the right properties to explain the observed dark matter.

“One particularly interesting possibility is that these long-lived dark particles are coupled to the Higgs boson in some fashion—that the Higgs is actually a portal to the dark world. We know for sure there’s a dark world, and there’s more energy in it than there is in ours. It’s possible that the Higgs could actually decay into these long-lived particles,” said LianTao Wang, a University of Chicago physicist, in 2019, referring to the last holdout particle in physicists’ grand theory of how the universe works, discovered at the LHC in 2012, filling the last gap in the standard model of fundamental particles and forces. Since then, the standard model has stood up to every test, yielding no hints of new physics.

The dark world makes up more than 95 percent of the universe, but scientists only know it exists from its effects—”like a poltergeist you can only see when it pushes something off a shelf.” We know there’s dark matter because like the poltergeist, we can see gravity acting on it keeping galaxies from flying apart.

Portal to Detect Massive Dark Matter

Enter the Higgs. To remedy this problem, a simple theoretical extension of the Standard Model assumes that existing particles, such as the Higgs boson, act as a “portal” between known particles and dark-matter particles. Since the Higgs boson couples to mass, massive dark-matter particles should interact with it. The Higgs boson still has large uncertainties associated with the strength of its interaction with Standard Model particles; up to 30% of the Higgs-boson decays can potentially be invisible, according to the latest ATLAS combined Higgs-boson measurements.

“The Amazing Higgs”–Portal to the Dark World to Ridding the Universe of Antimatter

Higgs Decaying into Dark Matter

Physicists are asking: “Could some of the Higgs bosons decay into dark matter?” As dark matter does not interact directly with the ATLAS detector, researchers look for signs of “invisible particles,” inferred through momentum conservation of the proton–proton collision products. According to the Standard Model, the fraction of Higgs bosons decaying to an invisible final state (four neutrinos!) accounts for just 0.1% and is thus negligible. Should such events be observed, it would be a direct indication of new physics and potential evidence of Higgs bosons decaying into dark-matter particles.

“Dark Energy’s Known Unknown” — Could It Be the Symmetron Field That Pervades Space Much Like the Higgs Field

At the LHC, the most sensitive channel to search for direct decays of the Higgs boson to invisible particles is via the so-called vector boson fusion (VBF) production of the Higgs boson. VBF Higgs-boson production results in two sprays of particles (called “jets”) that point in a more forward direction in the ATLAS detector. This, combined with a large missing momentum in perpendicular direction (“transverse”) to the beam axis from the invisible dark-matter particles, creates a unique signature that ATLAS physicists can search for.

“Dark Matter Particles as Big as a Galaxy”


75% more Critical Data

The ATLAS Collaboration has studied the full LHC Run 2 dataset, collected by the detector in 2015–2018, to search for Higgs-boson decays to dark-matter particles in VBF events. No significant excess of events over the expected background from known Standard Model processes was found in the analysis. ATLAS derived, at a 95% confidence level, an exclusion bound of the Higgs-boson decay to invisible particles of 13%. This analysis included roughly 75% more data than the previous ATLAS search, and the team implemented several improvements including:

1. –Faster filtering algorithms to generate more simulated collisions with equivalent computing power. Lack of simulated events was the leading uncertainty in the first 13 TeV version of this analysis.

2. –Optimized collision selection to accept ~50% more Higgs-boson events on the same dataset.

3. –Refined event categorization to result in a higher signal-to-background ratio in the search regions. This can be seen in Figure 1 as the red curve in the lower panel increases with higher invariant mass of the two leading jets (mjj).

4. –Improved acceptance for collisions enriched in background processes, allowing the analysts to improve the background-process modelling.

This observed exclusion is consistent with no signs of the Higgs boson decaying to dark matter. The new results advance the search for weakly interacting massive particles (WIMPs), a popular candidate for dark matter. ATLAS set additional exclusion limits for lower WIMP masses, which are compared to other direct-detection experiments in Figure 2. These limits are competitive with the best direct-detection experiments for WIMP masses up to half of the Higgs-boson mass, assuming the Higgs boson interacts directly with dark matter.

This new analysis places the strongest existing limits on the Higgs boson decaying to invisible particles to date. As the search goes on, physicists will continue to increase the sensitivity to this fundamental probe of dark matter.

“If the particle is there, we just have to find a way to dig it out,” Wang said in 2019 about the consistently elusive object. “Usually, the key is finding the question to ask.”

Source: Search for invisible Higgs boson decays with vector boson fusion signatures with the ATLAS detector using an integrated luminosity of 139 fb−1: … ATLAS-CONF-2020-008/

The Daily Galaxy, Max Goldberg, via CERN’s ATLAS Experiment