There’s been increasing speculation that many of the Milky Way’s more than 4,100 known exoplanets might resemble the ocean worlds of Jupiter’s storied moon Europa and Saturn’s Enceladus. “So if we’re thinking about these places as being possibly habitable, maybe bigger versions of them in other planetary systems are habitable too,” says NASA’s Lynnae Quick about planets with oceans that may be orbiting many of our galaxy’s one trillion stars.
In 2016, Kepler astronomers discovered planets that are unlike anything in our solar system –a “water world” planetary system orbiting the star Kepler-62. This five-planet system has two worlds in the habitable zone — their surfaces completely covered by an endless global ocean with no land or mountains in sight.
Many of these water worlds could resemble Earth’s marine ecosphere. Within our solar system, Caltech astrophysicist Mike Brown describes he rocky bottom of Europa’s vast ocean that reaches down 100 kilometers –a depth 10 times greater than the Marianas Trench–as almost like a miniature Earth –with plate tectonics, continents, deep trenches, and active spreading centers.”
Miniature of Earth’s Oceans
“Think about mid-ocean ridges on Earth,’ Brown writes on his blog, “with their black smokers belching scalding nutrient-rich waters into a sea floor teaming with life that is surviving on these chemicals. It doesn’t take much of an imagination to picture the same sort of rich chemical soup in Europa’s ocean leading to the evolution of some sort of life, living off of the internal energy generated inside of Europa’s core. If you’re looking for Europa’s whales – which many of my friends and I often joke that we are – this is the world you want to look for them on.”
Unfathomable Abodes of Life? –Water Worlds of the Milky Way
Flash forward to Arizona State University (ASU), where a team of researcher set out to investigate questions about the possibility of life existing on exo-water worlds by recreating the conditions of those water worlds in the laboratory. In this case, that laboratory was the Advanced Photon Source (APS) at the DOE’s Argonne National Laboratory.
X-Ray “Telescope”
“People hardly think about astrophysics when talking about an X-ray facility. But we can use a facility like the APS to understand an object too distant for us to see”, said lead researcher, Dan Shim, associate professor, at Arizona State University
What they found — recently published in Proceedings of the National Academy of Sciences — was a new transitional phase between silica and water, indicating that the boundary between water and rock on these exoplanets is not as solid as it is here on Earth. This pivotal discovery could change the way astronomers and astrophysicists have been modeling these exoplanets, and inform the way we think about life evolving on them.
Shim leads ASU’s Lab for Earth and Planetary Materials and has long been fascinated by the geological and ecological makeup of these distant worlds. That composition, he said, is nothing like any planet in our solar system — these planets may have more than 50% water or ice atop their rock layers, and those rock layers would have to exist at very high temperatures and under crushing pressure.
The Ocean Galaxy -Many of Milky Way’s 4,000 Known Exoplanets May Be Water Worlds
“Determining the geology of exoplanets is tough, since we can’t use telescopes or send rovers to their surfaces,” Shim said. “So we try to simulate the geology in the lab.”
How does one do that? First, you need the right tools. For this experiment, Shim and his team brought their samples to two APS beamlines: GeoSoilEnviroCARS (GSECARS) at beamline 13-ID-D, operated by the University of Chicago, and High-Pressure Collaborative Access Team (HPCAT) at beamline 16-ID-B, operated by Argonne’s X-ray Science Division.
The samples were compressed in diamond anvil cells, essentially two gem quality diamonds with tiny flat tips. Place a sample between them and you can squeeze the diamonds together, increasing the pressure.
“We can raise the pressure up to multiple millions of atmospheres,” said Yue Meng, a physicist in Argonne’s X-ray Science Division and a co-author on the paper. Meng was one of the main designers of the techniques used at HPCAT, which specializes in high-pressure, high-temperature experiments.
“The APS is one of the few places in the world where you can conduct this kind of cutting-edge research,” she said. “The beamline scientists, technicians and engineers make this research possible.”
Fuzzy boundary between rock and water
The pressure of exoplanets, Shim said, can be calculated, even though the data we have on these planets is limited. Astronomers can measure the mass and density, and if the size and the mass of the planet are known, the right pressure can be determined.
Once the sample is pressurized, infrared lasers — which can be adjusted to smaller than the width of a human blood cell — are used to heat it up. “We can bring the sample up to thousands of degrees Fahrenheit,” said Vitali Prakapenka, a beamline scientist at GSECARS, a research professor at the University of Chicago and a co-author on the paper. “We have two high power lasers that shine on the sample from both sides precisely aligned with an ultra-bright APS X-ray probe and temperature measurements along the optical paths with a sub-micron accuracy.”
The temperature of exoplanets is harder to measure, because there are so many factors that determine it: the amount of heat contained inside the planet, the age of the planet, and the amount of radioactive isotopes decaying inside the structure, giving off more heat. Shim’s team calculated a range of temperatures to work from.
Once the sample is pressurized and heated up, the APS’ ultra-bright X-ray beams (which can see through the diamonds and into the sample itself) can allow scientists to take snapshots of atomic scale structure changes during the chemical reactions as they happen. In this case, Shim and his team immersed a small amount of silica in water, increased the pressure and temperature, and monitored how the materials would react.
What they discovered is that at high temperature and pressure of about 30 gigapascals (about 300,000 times the standard atmospheric pressure on Earth), the water and rock start to merge.
“If you were to build a planet with water and rock, you would assume that the water forms a layer above rock,” he said. “What we found is that is not necessarily true. With enough heat and pressure, the boundary between rock and water becomes fuzzy.”
Findings incorporated into models of exoplanet water worlds
This is a new idea that will need to be incorporated into models of exoplanets, Prakapenka said.
“The main point is that it tells the people modeling the structure of these planets that the composition is more complicated than we thought,” Prakapenka said. “Before we believed that there was a separation between rock and water, but based on these studies, there is no sharp boundary.”
Scientists have conducted similar experiments before, Shim said, but those were predicated on an Earth-like setting with smaller increments of water. Observing this new phase transition gives modelers a better idea about the actual geological makeup of water-rich exoplanets, and also insights into what kinds of life might call those exoplanets home.
“It’s a starting point to build the way chemistry works on these planets,” Shim said. “How water interacts with rock is important for life on Earth, and therefore, it is also important to understanding the type of life that might be on some of these worlds.”
Shim acknowledges that this research is not the first thing one might picture when thinking about a light source like the APS. But it’s exactly that diversity that he said is an advantage of large-scale user facilities.
“People hardly think about astrophysics when talking about an X-ray facility,” he said. “But we can use a facility like the APS to understand an object too distant for us to see.”
The Daily Galaxy, Jake Burba, via DOE/Argonne Nat’l Lab
Read about The Daily Galaxy editorial team here