“Flash of Light from a Faraway Galaxy 4 Billion Years Ago” –First Triple Black Hole Merger

"Flash of Light from a Faraway Galaxy 4 Billion Years Ago" --First Triple Black Hole Merger

 

In a distant galaxy, two invisible merging black holes were nestled within a disk surrounding a much larger, invisible supermassive black hole 100 million time larger that the sun surrounded by a swarm of smaller black holes and stars exploded with light, generating gravitational waves, ripples in spacetime, that were captured as a flash of light four billions years later for the first time by astronomers at the NSF’s Laser Interferometer Gravitational-wave Observatory (LIGO) and the European Virgo detector on May 21, 2019, in what might prove to be an iconic event called S190521g.

If the results from the ancient flash of light prove true, it would mark the first time that colliding black holes have produced light as well as gravitational waves. “We have seen a visible signal from a previously invisible part of the universe,” said Matthew Graham Research Professor of Astronomy at the California Institute of Technology.

The event was confirmed by Caltech’s Zwicky Transient Facility (ZTF) located at Palomar Observatory near San Diego, which was performing its robotic survey of the sky that captured all kinds of objects that flare, erupt, or otherwise vary in the night sky, including the flare generated by the distant active supermassive black hole, or quasar, called J1249+3449, pinpointed to the region of the gravitational-wave event S190521g detected by LIGO.

Supermassive Monster Creates a Classical Minuet

“This supermassive black hole was burbling along for years before this more abrupt flare,” says Graham, the project scientist for ZTF. “The flare occurred on the right timescale, and in the right location, to be coincident with the gravitational-wave event. In our study, we conclude that the flare is likely the result of a black hole merger, but we cannot completely rule out other possibilities.” Graham is lead author of the new study, published yesterday, June 25, in the journal Physical Review Letters.

“Squeezing Spacetime” –LIGO Researchers End-Run Nature to Detect Gravitational Waves

“ZTF was specifically designed to identify new, rare, and variable types of astronomical activity like this,” says NSF Division of Astronomical Science Director Ralph Gaume. “NSF support of new technology continues to expand how we can track such events.”

“At the center of most galaxies lurks a supermassive black hole. It’s surrounded by a swarm of stars and dead stars, including black holes,” says co-author K. E. Saavik Ford of the City University of New York (CUNY) Graduate Center. “These objects swarm like angry bees around the monstrous queen bee at the center. They can briefly find gravitational partners and pair up but usually lose their partners quickly to the mad dance. But in a supermassive black hole’s disk, the flowing gas converts the mosh pit of the swarm to a classical minuet, organizing the black holes so they can pair up.”

Once the black holes merge, the new, now-larger black hole experiences a kick that sends it off in a random direction, and it plows through the gas in the disk. “It is the reaction of the gas to this speeding bullet that creates a bright flare, visible with telescopes,” says co-author Barry McKernan, also of the CUNY Graduate Center, BMCC, and AMNH.

Visible with Earth’s Telescopes

Such a flare is predicted to begin days to weeks after the initial splash of gravitational waves produced during the merger. In this case, ZTF did not catch the event right away, but when the scientists went back and looked through archival ZTF images months later, they found a signal that started days after the May 2019 gravitational-wave event. ZTF observed the flare slowly fade over the period of a month.

“The Whisper” –LIGO and Virgo Detects Signal of 1st Neutron Star Black Hole Collision

The scientists attempted to get a more detailed look at the light of the supermassive black hole, called a spectrum, but by the time they looked, the flare had already faded. A spectrum would have offered more support for the idea that the flare came from merging black holes within the disk of the supermassive black hole. However, the researchers say they were able to largely rule out other possible causes for the observed flare, including a supernova or a tidal disruption event, which occurs when a black hole essentially eats a star.

Suddenly Intensifies May 2019

What is more, the team says it is not likely that the flare came from the usual rumblings of the supermassive black hole, which regularly feeds off its surrounding disk. Using the Catalina Real-Time Transient Survey, led by Caltech, they were able to assess the behavior of the black hole over the past 15 years, and found that its activity was relatively normal until May of 2019, when it suddenly intensified.

Supermassive Black Holes –“Could Actually Be Enigmatic Dark-Energy Objects”

“Supermassive black holes like this one have flares all the time. They are not quiet objects, but the timing, size, and location of this flare was spectacular,” says co-author Mansi Kasliwal (MS ’07, PhD ’11), an assistant professor of astronomy at Caltech. “The reason looking for flares like this is so important is that it helps enormously with astrophysics and cosmology questions. If we can do this again and detect light from the mergers of other black holes, then we can nail down the homes of these black holes and learn more about their origins.”

Another Flare Predicted

The newly formed black hole should cause another flare in the next few years. The process of merging gave the object a kick that should cause it to enter the supermassive black hole’s disk again, producing another flash of light that ZTF should be able to see.

The Physical Review Letters paper, titled, “A Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational Wave Event GW190521g,” was funded by the NSF, NASA, the Heising-Simons Foundation, and the GROWTH (Global Relay of Observatories Watching Transients Happen) program.

In addition to the NSF, ZTF is funded by an international collaboration of partners, with additional support from NASA, the Heising-Simons Foundation, members of the Space Innovation Council at Caltech, and Caltech itself.

The Daily Galaxy, Max Goldberg, via Caltech and New York Times  

Image at the top of the page: An artist’s concept of a supermassive black hole and its surrounding disk of gas. Embedded within this disk are two smaller black holes orbiting one another. Caltech/R. Hurt (IPAC)