XMM-Newton Space-Telescope Reveals 'Impossible' Super-Flare from a Tiny Star – The Daily Galaxy

Favicon
By Editorial Team Published on February 1, 2020 08:08
Giant Flare From A Tiny Star Pillars E1582303592166
XMM-Newton Space-Telescope Reveals 'Impossible' Super-Flare from a Tiny Star – The Daily Galaxy - © The Daily Galaxy --Great Discoveries Channel

Posted on Feb 21, 2020 in Astronomy, Physics, Science

A tiny star known by its catalog number J0331-27, an L dwarf just above the boundary of actually being a star about eight percent the Sun’s mass, has been discovered emitting an enormous ‘super flare’ of X-rays—a dramatic high-energy eruption. In a matter of minutes, it released more than ten times more energy of even the most intense flares generated the Sun, posing a fundamental problem for astronomers, who did not think it possible on stars that small.

“There is still much to be discovered in the XMM-Newton archive,” says De Luca Andrea of INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica in Milan, Italy about the enormous X-ray flare buried in data recorded on 5 July 2008 by the European Photon Imaging Camera (EPIC) on board ESA’s XMM-Newton X-ray observatory.. “In a sense, I think this is only the tip of the iceberg.”

L Dwarf Anomaly

“This is the most interesting scientific part of the discovery, because we did not expect L-dwarf stars to store enough energy in their magnetic fields to give rise to such outbursts,” says Beate Stelzer, Institut für Astronomie und Astrophysik Tübingen, Germany, and INAF—Osservatorio Astronomico di Palermo, Italy, who was part of the study team.

The artist’s impression of an L dwarf star shown above caught in the act of emitting an enormous ‘super flare’ of X-rays, as detected by ESA’s XMM-Newton X-ray space observatory. Astronomers spotted the enormous X-ray flare in data recorded on 5 July 2008 by the European Photon Imaging Camera (EPIC) onboard XMM-Newton. ( ESA)

The Conundrum

Energy can only be placed in a star’s magnetic field by charged particles, which are also known as ionized material and created in high-temperature environments. As an L dwarf, however, J0331-27 has a low surface temperature for a star—just 2100K compared to the roughly 6000K on the Sun. Astronomers did not think such a low temperature would be capable of generating enough charged particles to feed so much energy into the magnetic field.

The conundrum is: how a super flare is even possible on such a star. “That’s a good question,” says Beate. “We just don’t know—nobody knows.”

The super flare was discovered in the XMM-Newton data archive as part of a large research project led by De Luca . The project studied the temporal variability of around 400 000 sources detected by XMM-Newton over 13 years

De Luca and collaborators were particularly looking for peculiar phenomena and in J0331-27 they certainly got that. A number of similar stars had been seen to emit super flares in the optical part of the spectrum, but this is the first unambiguous detection of such an eruption at X-ray wavelengths.

The wavelength is significant because it signals which part of the atmosphere the super flare is coming from: optical light comes from deeper in the star’s atmosphere, near its visible surface, whereas X-rays come from higher up in the atmosphere.

Understanding the similarities and differences between this new—and so far unique—super flare on the L dwarf and previously observed flares, detected at all wavelengths on stars of higher mass is now a priority for the team. But to do that, they need to find more examples.

One clue they do have is that there is only one flare from J0331-27 in the data, despite XMM-Newton having observed the star for a total of 3.5 million seconds—about 40 days. This is peculiar because other flaring stars tend to suffer from numerous smaller flares too.

“The data seem to imply that it takes an L dwarf longer to build up the energy, and then there is one sudden big release,” says Beate.

Stars that flare more frequently release less energy each time, while this L dwarf seems to release energy very rarely but then in a really big event. Why this might be the case is still an open question that needs further investigation.

“The discovery of this L dwarf super flare is a great example of research based on the XMM-Newton archive, demonstrating the mission’s enormous scientific potential,” says Norbert Schartel, XMM-Newton project scientist for ESA. “I look forward to the next surprise.”

Source:  De Luca Andrea et al. EXTraS discovery of an X-ray superflare from an L dwarf, Astronomy & Astrophysics (2020). DOI: 10.1051/0004-6361/201937163

The Daily Galaxy, Sam Cabot, via European Space Agency (ESA)

Read about The Daily Galaxy editorial team here

No comment on «XMM-Newton Space-Telescope Reveals 'Impossible' Super-Flare from a Tiny Star – The Daily Galaxy»

Leave a comment

Comments are subject to moderation. Only relevant and detailed comments will be validated. - * Required fields