Weird World of Quantum Black Holes –“May Confirm Stephen Hawking’s Hypothesis”

NGC Galaxy 4696

 

“According to Einstein’s Theory of General Relativity, nothing can escape from the gravity of a black hole once it has passed a point of no return, known as the event horizon,” explained Niayesh Afshordi, a physics and astronomy professor at Waterloo about echoes in gravitational wave signals that hint that the event horizon of a black hole may be more complicated than scientists currently think based on research reporting the first tentative detection of these echoes, caused by a microscopic quantum “fuzz” that surrounds newly formed black holes. “This was scientists’ understanding for a long time until Stephen Hawking used quantum mechanics to predict that quantum particles will slowly leak out of black holes, which we now call Hawking radiation.

Afshordi is referring to Hawking’s 1975 conjecture that if one takes quantum theory into account, it seems that “black” holes should glow slightly with “Hawking radiation”, consisting of photons, neutrinos, and a myriad of massive particles.

“Scientists have been unable to experimentally determine if any matter is escaping black holes until the very recent detection of gravitational waves,” continued Afshordi. “If the quantum fuzz responsible for Hawking radiation does exist around black holes, gravitational waves could bounce off of it, which would create smaller gravitational wave signals following the main gravitational collision event, similar to repeating echoes.”

Afshordi and his coauthor Jahed Abedi from Max-Planck-Institut für Gravitationsphysik in Germany, have reported the first tentative findings of these repeating echoes, providing experimental evidence that black holes may be radically different from what Einstein’s theory of relativity predicts, and lack event horizons.

They used gravitational wave data from the first observation of a neutron star collision, recorded by the LIGO/Virgo gravitational wave detectors.

“The Smoking Gun” –Stephen Hawking’s Last Great Theory On the Origin of the Universe

The echoes observed by Afshordi and Abedi match the simulated echoes predicted by models of black holes that account for the effects of quantum mechanics and Hawking radiation.

“Our results are still tentative because there is a very small chance that what we see is due to random noise in the detectors, but this chance becomes less likely as we find more examples,” said Afshordi. “Now that scientists know what we’re looking for, we can look for more examples, and have a much more robust confirmation of these signals. Such a confirmation would be the first direct probe of the quantum structure of space-time.”

The study, “Echoes from the Abyss: A highly spinning black hole remnant for the binary neutron star merger GW170817,” was published in the Journal of Cosmology and Astroparticle Physics in November, and was awarded the first place Buchalter Cosmology Prize this month.

Source: Jahed Abedi et al. Echoes from the abyss: a highly spinning black hole remnant for the binary neutron star merger GW170817, Journal of Cosmology and Astroparticle Physics (2019). DOI: 10.1088/1475-7516/2019/11/010
Provided by University of Waterloo

The Hubble image at the top of the page shows the central black hole of  galaxy NGC 4696 devouring its host.

The Daily Galaxy via Matthew Grant, University of Waterloo