“A Lonely Star” — Revealed that 11.5 Billion Years Ago a Galaxy Slammed Into the Milky Way

Milky Way Southern Sky


Gaia Mission scientists called it “hiding in plain sight” referring to their major breakthrough in unraveling the formation history of the Milky Way when our galaxy merged with another galaxy early in its life, littering evidence across the sky all around us. The merger — a collision, actually — reports astronomers at Yale University, happened 11.5 billion years ago when a small galaxy called Gaia-Enceladus slammed into what then existed of the Milky Way, Earth’s home galaxy, which is about 13.5 billion years old.

The Yale team followed the life story of a single, bright star in the Indus constellation, visible today from Earth’s southern hemisphere. The scientists said this star, nu Indi, was already orbiting inside the Milky Way prior to the Gaia-Enceladus collision, which unfolded over millions of years. As the merger progressed, it altered nu Indi’s orbit around the center of the Milky Way, providing a marker for when the merger happened.

“Milky Way Orbit 19” –Extinction by Spiral-Arm Apocalypse

“We know today that the Milky Way was formed by the merger of many small galaxies. This is the first time we have been able to determine when such a merger happened,” said Sarbani Basu, professor and chair of astronomy at Yale and co-author of a new study reporting the discovery. “This is an important step in understanding when the Milky Way accreted, or collected, its mass.”

The study appears Jan. 13 in the journal Nature Astronomy. Dozens of astronomers from around the world, led by the University of Birmingham in the U.K., conducted the work. Yale graduate student Joel Ong is also a co-author.

“Hiding in Plain Sight” –Milky Way’s Ancient Merger With Fossil Galaxy Gaia-Enceladus

“My role was to determine the age of the star (nu Indi) using seismic data,” Basu said. “Like many low-mass stars, this star pulsates, or quakes, continuously. The quakes can be described as a series of tones and overtones.”

Basu and her colleagues calculated “frequencies” from nu Indi’s tones and overtones. Those frequencies, in turn, indicated the star’s physical structure and properties. From there, the researchers were able to gauge nu Indi’s stage of development, factor in its brightness, and estimate its age.

“Milky Way’s Hidden Past” –Gaia Unveils Dark-Matter Object 1-100 Million Times Mass of the Sun


Nu Indi’s age the key

Knowing nu Indi’s age provided a limit for when the merger could have taken place, the researchers said.

Some of the world’s latest technology aided researchers in their detective work. They got data on nu Indi’s quakes from NASA’s Transiting Exoplanet Survey Satellite (TESS). Launched in 2018, TESS is surveying stars across most of the sky to search for planets orbiting those stars and to study the stars themselves. The researchers also used information collected from the European Space Agency (ESA) Gaia Mission.

University of Birmingham astrophysicist Bill Chaplin, lead author of the study and leader of the NASA Kepler Mission, said determining the natural oscillations of stars — called asteroseismology — is a way to better understand the history of stars and the environments in which they formed.

“This study demonstrates the potential of asteroseismology with TESS, and what is possible when one has a variety of cutting-edge data available on a single, bright star,” Chaplin said.

Image at the top of the page is a mosaic of the Milky Way southern sky produced from a year of observations by NASA’s Transiting Exoplanet Survey Satellite (TESS). (NASA/MIT/TESS and Ethan Kruse)

The Daily Galaxy, Max Goldberg, via Yale University 

Leave a Reply

Your email address will not be published. Required fields are marked *