“One Trillion Times Age of the Universe” –The Rarest Thing Ever Detected

 

Abel 2597 Galaxy Cluster

 

“We actually saw this decay happen. It’s the longest, slowest process that has ever been directly observed, and our dark matter detector was sensitive enough to measure it,” said Ethan Brown, a particle physicist at Rensselaer Polytechnic Institute, about a mind-boggling process that takes more than one trillion times longer than the age of the universe, advancing the frontiers of knowledge about the most fundamental characteristics of matter. “It’s amazing to have witnessed this process, and it says that our detector can measure the rarest thing ever recorded.”

(Each day, between Christmas and New Year’s Day, we’ll post one of The Daily Galaxy’s 2019 most viewed posts as ranked by Google Analytics. With our best wishes for The Holidays.)

The XENON Collaboration research team did it with an instrument built to find the most elusive particle in the universe—dark matter. In a paper to be published tomorrow in the journal Nature, researchers announce that they have observed the radioactive decay of xenon-124, which has a half-life of 1.8 X 1022 years.

“Dark Matter Particles as Big as a Galaxy”

The XENON Collaboration runs XENON1T, a 1,300-kilogram vat of super-pure liquid xenon shielded from cosmic rays in a cryostat submerged in water deep 1,500 meters beneath the Gran Sasso mountains of Italy. The researchers search for dark matter by recording tiny flashes of light created when particles interact with xenon inside the detector. And while XENON1T was built to capture the interaction between a dark matter particle and the nucleus of a xenon atom, the detector actually picks up signals from any interactions with the xenon.

The evidence for xenon decay was produced as a proton inside the nucleus of a xenon atom converted into a neutron. In most elements subject to decay, that happens when one electron is pulled into the nucleus. But a proton in a xenon atom must absorb two electrons to convert into a neutron, an event called “double-electron capture.”

Strange Lightness of Dark Matter –“It May Be Older Than the Big Bang”

Double-electron capture only happens when two of the electrons are right next to the nucleus at just the right time, Brown said, which is “a rare thing multiplied by another rare thing, making it ultra-rare.”

When the ultra-rare happened, and a double-electron capture occurred inside the detector, instruments picked up the signal of electrons in the atom re-arranging to fill in for the two that were absorbed into the nucleus.

“Electrons in double-capture are removed from the innermost shell around the nucleus, and that creates room in that shell,” said Brown. “The remaining electrons collapse to the ground state, and we saw this collapse process in our detector.”

The achievement is the first time scientists have measured the half-life of this xenon isotope based on a direct observation of its radioactive decay.

“Dr. Brown’s work in calibrating the detector and ensuring that the xenon is scrubbed to the highest possible standard of purity was critical to making this important observation,” said Curt Breneman, dean of the School of Science.

“The Loophole” –The Discovery That Could Have Predicted Why the Universe Exists

The XENON Collaboration includes more than 160 scientists from Europe, the United States, and the Middle East, and, since 2002, has operated three successively more sensitive liquid xenon detectors in the Gran Sasso National Laboratory in Italy. XENON1T, the largest detector of its type ever built, acquired data from 2016 until December 2018, when it was switched off. Scientists are currently upgrading the experiment for the new XENONnT phase, which will feature an active detector mass three times larger than XENON1T. Together with a reduced background level, this will boost the detector’s sensitivity by an order of magnitude.

The Daily Galaxy, Sam Cabot, via Rensselaer Polytechnic Institute

Originally posted on April 24, 2019 (260,019 views)

The image at the top of the page shows Abell 2597, a galaxy cluster located about one billion light years from Earth. This image contains X-rays from NASA’s Chandra X-ray Observatory (blue), optical data from the Hubble Space Telescope and the Digitized Sky Survey (yellow) and emission from hydrogen atoms (red) from the Walter Baade Telescope in Chile.