“Obscured” –Vast Void Behind Center of the Milky Way

Dark Matter and Local Void


The universe is a tapestry of galaxy congregations and vast voids. In a new study applies the same tools from an earlier study to map the size and shape of an extensive empty region they called the Local Void that borders the Milky Way that has remained poorly studied because it lies behind the center of our galaxy and is heavily obscured from our view.

Using the observations of galaxy motions, reported in The Astrophysical Journal, Brent Tully‘s team at the University of Hawaii infer the distribution of mass responsible for that motion, and constructed three-dimensional maps that reveal more of the vast cosmic structure surrounding our Milky Way galaxy.

A smoothed rendition of the structure surrounding the Local Void is shown below. The Milky Way galaxy lies at the origin of the red-green-blue orientation arrows (each 200 million lightyears in length). It is at a boundary between a large, low density void, and the high density Virgo cluster.


Local Void


Galaxies not only move with the overall expansion of the universe, they also respond to the gravitational tug of their neighbors and regions with a lot of mass. As a consequence, relative to the overall expansion they are moving towards the densest areas and away from regions with little mass – the voids.

Although we live in a cosmic metropolis, back in 1987 Tully and Richard Fisher noted that our Milky Way galaxy is also at the edge of an extensive empty region that they called the Local Void.

Now, Tully and his team have measured the motions of 18,000 galaxies in the Cosmicflows-3 compendium of galaxy distances, constructing a cosmographic map that highlights the boundary between the collection of matter and the absence of matter that defines the edge of the Local Void. They used the same technique in 2014 to identify the full extent of our home supercluster of over one hundred thousand galaxies, giving it the name Laniakea, meaning “immense heaven” in Hawaiian.

Supervoids of the Universe – Mystery of the Vast CMB Cold Spot 

For 30 years, astronomers have been trying to identify why the motions of the Milky Way, our nearest large galaxy neighbor Andromeda, and their smaller neighbors deviate from the overall expansion of the Universe by over 600 km/s (1.3 million mph). The new study shows that roughly half of this motion is generated “locally” from the combination of a pull from the massive nearby Virgo Cluster and our participation in the expansion of the Local Void as it becomes ever emptier.

The Daily Galaxy, Alex Tingely, via University of Hawaii at Manoa

Leave a Reply

Your email address will not be published.