Posted on Feb 25, 2019 in Astronomy, Science
The supermassive black hole at the center of our Milky Way Galaxy, Sagittarius A*, is by far the closest such object to us, only about 25 thousand light-years away. Although not nearly as active or luminous as other SMBHs, its relative proximity provides astronomers with a unique opportunity to probe what happens close to the “edge” of a black hole, which Einstein didn’t believe in, although general relativity predicted their existence.”.
New infrared and X-ray images were captured by Harvard-Smithsonian Center for Astrophysics (CfA) astronomers Steve Willner, Joe Hora, Giovanni Fazio, and Howard Smith, who undertook a systematic campaign of simultaneous multiwavelength observations of flaring in SagA* using the Spitzer and Chandra observatories (the ALMA Submillimeter Array was also used).
“There has never been direct evidence of a black hole,” said physicist George Chapline at the Lawrence Berkeley National Laboratory last year, while acknowledging there are objects that general relativity would predict are black holes at the centers of galaxies.
Sorry, George: but in over one hundred hours of data taken over four years (the longest such dataset ever obtained), the CfA team observed four Sagittarius A* flare events in both X-ray and infrared in which the X-ray event appears to lead the infrared by ten to twenty minutes. The correlation between the observed peaks implies there is some physical connection between them, and the slight timing difference is in agreement with models that describe the flares as coming from magnetically driven particle acceleration and shocks.
Why Do Supermassive Black Holes Like the Milky Way’s Sagittarius A* Flicker?
Monitored in the radio since its discovery and more recently in the infrared and the X-ray, Sgr A* appears to be accreting material at a very low rate, only a few hundredths of an Earth-mass per year. Its X-ray emission is persistent, probably resulting from the rapid motions of electrons in the hot accretion flow associated with the black hole.
Strange, Ancient Stars of the Milky Way -Challenge Current Understanding
Once a day there are also flares of emission that are highly variable; they appear more often in the infrared than in X-rays. Some submillimeter wavelength flares have also been tentatively linked to IR flares, although their timing seems to be delayed with respect to infrared events. Despite these intensive observational efforts, the physical mechanisms producing flaring around this SMBH are still unknown and are the topic of intense theoretical modeling.
S-Stars Orbiting Sagittarius A* –Trace the Mass of Milky Way’s Supermassive Black Hole
Exactly simultaneous events can’t be completely ruled out, however, but the results are nevertheless inconsistent with some of the more exotic models that involve the relativistic motion of electrons. If future simultaneous observations planned for the summer of 2019 also see flaring, they can provide new constraints on the time lag and on associated physical models.
The Daily Galaxy, Sam Cabot, via Harvard-Smithsonian Center for Astrophysics
Read about The Daily Galaxy editorial team here