Posted on Jan 19, 2019
A strange star system has been discovered about 8000 light years from Earth that harbors the first known candidate in the Milky Way to produce a dangerous gamma-ray burst, among the most explosive events in the universe. The discovery is a “ringside seat into beautiful and dangerous physics that we have not seen before in our galaxy.”
The findings are controversial as no gamma-ray burst (NASA image above) has ever been detected within the Milky Way. “The rapid rotation puts Apep into a whole new class. Normal supernovae are already extreme events but adding rotation to the mix can really throw gasoline on the fire.”
The system, comprising a pair of scorchingly luminous stars, was nicknamed Apep by the team after the serpentine Egyptian god of chaos. One star is on the brink of a massive supernova explosion. “This is the first such system to be discovered in our own galaxy,” explains Joseph Callingham of the Netherlands Institute for Radio Astronomy (ASTRON), lead author of the study reporting this system. “We never expected to find such a system in our own backyard.”
Mystery of Magnetic Fields Powering Gamma Ray Bursts –“A Million Billion Times Stronger than Earth’s”
The researchers think this might be the recipe for a perfect stellar storm to produce a gamma-ray burst, which are the most extreme events in the Universe after the Big Bang itself. Fortunately, Apep appears not to be aimed at Earth, because a strike by a gamma-ray burst from this proximity could strip ozone from the atmosphere, drastically increasing our exposure to UV light from the Sun.
This serpentine swirl shown below, captured by the VISIR instrument on ESO’s Very Large Telescope (VLT, has an explosive future ahead of it; it is a Wolf-Rayet star system, and a likely source of one of the most energetic phenomena in the Universe — a long-duration gamma-ray burst (GRB) .
The VISIR instrument on ESO’s VLT captured the stunning image at the top of the page of the newly-discovered massive binary star system. With 2 Wolf-Rayet stars orbiting each other in the binary, the serpentine swirls surrounding Apep are formed by the collision of two sets of powerful stellar winds, which create the spectacular dust plumes seen in the image.
China’s New SpaceLab to Probe Gamma Ray Bursts –“A Potential Mass-Extinction Event If One Occurs in Our Milky Way Galaxy”
The reddish pinwheel in this image is data from the VISIR instrument on ESO’s Very Large Telescope (VLT), and shows the spectacular plumes of dust surrounding Apep. The blue sources at the center of the image are a triple star system — which consists of a binary star system and a companion single star bound together by gravity. Though only two star-like objects are visible in the image, the lower source is in fact an unresolved binary Wolf-Rayet star. The triple star system was captured by the NACOadaptive optics instrument on the VLT.
The system, which comprises a nest of massive stars surrounded by a “pinwheel” of dust, is officially known only by unwieldy catalog references like 2XMM J160050.7-514245. However, the astronomers chose to give this fascinating object a catchier moniker — “Apep”.
That sculpted plume is what makes the system so important, said Peter Tuthill, research group leader at the University of Sydney. “When we saw the spiral dust tail we immediately knew we were dealing with a rare and special kind of nebula called a pinwheel,” Professor Tuthill said.
“The curved tail is formed by the orbiting binary stars at the center, which inject dust into the expanding wind creating a pattern like a rotating lawn sprinkler. Because the wind expands so much, it inflates the tiny coils of dust revealing the physics of the stars at the heart of the system.”
However, the data on the plume presented a conundrum: the stellar winds were expanding 10 times faster than the dust.
“It was just astonishing,”Tuthill said. “It was like finding a feather caught in a hurricane just drifting along at walking pace.”
GRBs are among the most powerful explosions in the Universe. Lasting between a few thousandths of a second and a few hours, they can release as much energy as the Sun will output over its entire lifetime. Long-duration GRBs — those which last for longer than 2 seconds — are believed to be caused by the supernova explosions of rapidly-rotating Wolf-Rayet stars.
Some of the most massive stars evolve into Wolf-Rayet stars towards the end of their lives. This stage is short-lived, and Wolf-Rayets survive in this state for only a few hundred thousand years — the blink of an eye in cosmological terms. In that time, they throw out huge amounts of material in the form of a powerful stellar wind, hurling matter outwards at millions of kilometers per hour; Apep’s stellar winds were measured to travel at an astonishing 12 million km/h.
These stellar winds have created the elaborate plumes surrounding the triple star system — which consists of a binary star system and a companion single star bound together by gravity. Though only two star-like objects are visible in the image, the lower source is in fact an unresolved binary Wolf-Rayet star. This binary is responsible for sculpting the serpentine swirls surrounding Apep, which are formed in the wake of the colliding stellar winds from the two Wolf-Rayet stars.
Compared to the extraordinary speed of Apep’s winds, the dust pinwheel itself swirls outwards at a leisurely pace, “crawling” along at less than 2 million km/h. The wild discrepancy between the speed of Apep’s rapid stellar winds and that of the unhurried dust pinwheel is thought to result from one of the stars in the binary launching both a fast and a slow wind — in different directions.
This would imply that the star is undergoing near-critical rotation — that is, rotating so fast that it is nearly ripping itself apart. A Wolf-Rayet star with such rapid rotation is believed to produce a long-duration GRB when its core collapses at the end of its life.
Image credit: ESO/Callingham et al.
The Daily Galaxy via ESO