Fast radio bursts (FRBs) are one of the great astrophysical mysteries. They are brief, bright flashes of radio waves that last a few milliseconds. Despite happening frequently – thousands occur over the entire sky every day – only a couple dozen have ever been seen. Scientists don’t know what causes them but it must involve incredible energy–equivalent to the amount released by the Sun in 80 years.
Australian researchers using a CSIRO radio telescope in Western Australia have nearly doubled the known number of ‘fast radio bursts’– powerful flashes of radio waves from deep space. The team’s discoveries include the closest and brightest fast radio bursts ever detected.
“We still have no new clue on whether the origin is artificial or natural,” said Harvard’s Avi Loeb. Loeb had examined the possibility that fast radio bursts come from radio transmitters constructed by an advanced alien civilization — perhaps evidence of powerful energy beams used to propel alien starships. He also theorized that repeater sources such as FRB 121102 are more likely to be such alien signals because natural origin explanations would most likely produce only a single burst.
But, new observations have now debunked alien technology as the explanation for at least one source of a burst, according to a new paper in Nature by Jason Hessels of the University of Amsterdam and a multinational crew of radio astronomers.
“We’ve found 20 fast radio bursts in a year, almost doubling the number detected worldwide since they were discovered in 2007,” said lead author Dr Ryan Shannon, from Swinburne University of Technology and the OzGrav ARC Centre of Excellence. “Using the new technology of the Australia Square Kilometre Array Pathfinder (ASKAP), we’ve also proved that fast radio bursts are coming from the other side of the Universe rather than from our own galactic neighborhood.”
First, they represent a new, very unusual, unexpected phenomenon. The bursts come from other galaxies, meaning incredible amounts of energy are required to produce them – some bursts contain more energy than our Sun produces in decades. Second, FRBs have the potential to be a new tool that we can use to understand the structure of matter in the universe.
The key property of the bursts that could turn them into a valuable tool is their dispersion: shorter (bluer) wavelength radio waves arrive at the telescope before the longer (redder) ones.
This dispersion is the result the radio waves passing through hot gas (plasma), which slows down the radio waves by an amount that depends on the wavelength. The amount of dispersion tells us how much matter the bursts have travelled through, and until now it has been unclear where that matter is.
A fast radio burst leaves a distant galaxy, travelling to Earth over billions of years and occasionally passing through clouds of gas in its path. Each time a cloud of gas is encountered, the different wavelengths that make up a burst are slowed by different amounts.
Timing the arrival of the different wavelengths at a radio telescope tells us how much material the burst has travelled through on its way to Earth and allows astronomers to detect “missing” matter located in the space between galaxies. There are two places where this matter could be. It could be in the FRB host galaxy, in this case FRBs would be coming from relatively close galaxies.
The other, exciting possibility is that the dispersion is the result of matter in between galaxies. This matter, referred to as the cosmic web, is nearly impossible to study any other way. Figuring out where it resides is another outstanding problem in astronomy. In this case, the FRBs would be coming from more distant objects.
Ryan Shannon and colleagues at Swinburne University of Technology and the ARC Centre of Excellence for Gravitational-Wave Discovery (OzGrav) decided the first step to solve the FRB mystery was to find more of them, and find them quickly. To do this they decided to go wide and simultaneously stare at as much sky as possible. We used the Australian Square Kilometer Array Pathfinder (ASKAP), a radio telescope in regional Western Australia that consists of 36, 12-metre dish antennas.
Each antenna is equipped with phased array feeds – radio cameras that would enable searches 36 times wider than could be seen with older technology.
They further widened the searches by pointing the antennas in different directions like a fly’s eye. While these searches would be less sensitive than those that found bursts previously, mostly with the 64-metre Parkes radio telescope in New South Wales, we were relatively confident bright ones existed in sufficient numbers that we should find more.
To conduct the searches, we used six to nine of the ASKAP antennas, while the rest were used for other observing projects. Our first discovery came after just over three days of observing, as mentioned earlier in The Conversation.
It turns out that we were a bit lucky to find the first one as soon as we did. I was responsible for scheduling the observing, which could run 24/7, and searching the data.
It was an exciting time, and Shannon says he was very happy to be on the front line and be the first one to spot a new burst. Over the course of the next year, the team found the 19 additional bursts reported.
The ASKAP FRB sample. For each burst, the top panels show what the FRB signal looks like when averaged over all frequencies. The bottom panels show how the brightness of the burst changes with frequency. The bursts are vertical because they have been corrected for dispersion.
As the burst count started to rise, we noticed differences with the previously detected ones. The ASKAP bursts have less dispersion than the ones found at Parkes. This, combined with the fact that the ASKAP bursts are much brighter, indicates that there is a correlation between burst brightness and dispersion. If all the dispersion was coming from within host galaxies, this would not be the case.
They were now able to confidently say that the bursts are experiencing the effects of the diffuse matter in the cosmic web. It also says that bursts are coming from vast distances – from galaxies half way across the universe.
A second key result of our survey is that none of the bursts repeated. As part of our searches, we observed the same regions of sky almost daily, and in total we had spent 12,000 hours (500 days) staring at the positions where we found FRBs.
This makes the bursts different than the best studied, known as FRB 121102 – aptly called “the repeater” – from which hundreds of pulses have been detected.
Are there two classes of FRBs? It can be scientifically fraught to subdivide phenomena such as FRBs into sub-classes when so few are known. But the differences between the repeater and the rest of the FRBs are starting to become too big to ignore.
The next step for our project is to commission a mode for ASKAP that can be used to localize bursts. Instead of using the fly’s eye approach, they’ll point all of the antennas in the same direction, search for bursts in real time, and then make an image of the sky for the millisecond the FRB emission was passing by Earth.
They’ll be able tie bursts to host galaxies and accurately measure their distances. By combining the distances with the dispersions we’ll be able to start making a 3D map of the cosmic web.
The Breakthrough Listen team, reports MACH Science, is already looking beyond fast radio bursts. It’s developing AI to analyze a wider range of similarly interesting signals coming from nearby stars and galaxies. In this case, AI’s broad pattern recognition abilities could prove especially helpful when nobody knows exactly what an alien signal might look like.
“If AI could flag things that don’t look right or don’t look natural, that might be an interesting thing to do,” says Seth Shostak, a senior astronomer at the SETI Institute in California who was not involved in the Breakthrough Listen study.
Eventually, AI could do much more than just filter radio signals. Shostak speculates that AI could someday automatically search telescope images for unusual visual features that might represent huge alien megastructures from either existing or bygone civilizations. “AI can find cats on the Internet, but maybe it could also find Klingons in space.”
The Daily Galaxy via The Conversation and and The New York Times
Top 10 Most-Viewed Headlines of 2018
The European Southern Observatories in Chile.
“Spying on Earth’s Most Awesome Creatures” –Scientists Pursue Undiscovered Species of Whales Swimming Below Since the Eocene
Ancient Stars 6-9 Billion Years Old in Milky Way’s Halo –“May Harbor Advanced Civilizations”
Artificial Intelligence Is Already Out There, and It’s Billions of Years Old” (WATCH Video)
‘Ghost Signals’ of Extraterrestrial Civilizations Haunt the Milky Way –Suggests the New Drake Equation (WATCH Video)
“Odds That There has Never Been Another Civilization in the Universe One in Ten Billion Trillion” –A Joe Rogan Interview
“The Mystery of Where Extraterrestrial Life is Hiding Deepens”
“We’re Entering Uncharted Territory” –The Exoplanet Revolution May Reveal that Rise of Civilizations May Not be Unusual
“The Big Rip” –When Matter and Spacetime are Gradually Torn Apart Through Expansion of the Universe
“Humans are the First to Arrive at the Interstellar Stage” –Physicist Answers the Fermi Paradox