“Hugely Exciting” –Oldest Galaxies in the Cosmos Detected: ‘Like Finding Fossils of the First Humans that Inhabited Earth’

 

“Our finding supports the current model for the evolution of our Universe, the ‘Lambda-cold-dark-matter model’ in which the elementary particles that make up the dark matter drive cosmic evolution,” said Carlos Frenk, Director of Durham University’s Institute for Computational Cosmology.

The team from the Institute for Computational Cosmology at Durham University and the Harvard-Smithsonian Center for Astrophysics, has found evidence that the faintest satellite galaxies orbiting our own Milky Way galaxy are amongst the very first galaxies that formed in our Universe.

Scientists working on this research have described the finding as “hugely exciting” explaining that that finding some of the Universe’s earliest galaxies orbiting the Milky Way is “equivalent to finding the remains of the first humans that inhabited the Earth.”

The research group’s findings suggest that galaxies including Segue-1, Bootes I, Tucana II and Ursa Major I are in fact some of the first galaxies ever formed, thought to be over 13 billion years old. When the Universe was about 380,000 years old, the very first atoms formed. These were hydrogen atoms, the simplest element in the periodic table. These atoms collected into clouds and began to cool gradually and settle into the small clumps or “halos” of dark matter that emerged from the Big Bang.

The image below shows the distribution of satellite galaxies orbiting a computer-simulated galaxy, as predicted by the Lambda-cold-dark-matter cosmological model. The blue circles surround the brighter satellites, the white circles the ultrafaint satellites (so faint that they are not readily visible in the image). The ultrafaint satellites are among the most ancient galaxies in the Universe; they began to form when the Universe was only about 100 million years old (compared to its current age of 13.8 billion years).

 

This cooling phase, known as the “Cosmic dark ages”, lasted about 100 million years. Eventually, the gas that had cooled inside the halos became unstable and began to form stars—these objects are the very first galaxies ever to have formed. With the formation of the first galaxies, the Universe burst into light, bringing the cosmic dark ages to an end.

Dr. Sownak Bose, at Harvard-Smithsonian Center for Astrophysics, working with Dr. Alis Deason and Professor Carlos Frenk at Durham University’s ICC, identified two populations of satellite galaxies orbiting the Milky Way.

The first was a very faint population consisting of the galaxies that formed during the “cosmic dark ages”. The second was a slightly brighter population consisting of galaxies that formed hundreds of millions of years later, once the hydrogen that had been ionized by the intense ultraviolet radiation emitted by the first stars was able to cool into more massive dark matter halos.

Remarkably, the team found that a model of galaxy formation that they had developed previously agreed perfectly with the data, allowing them to infer the formation times of the satellite galaxies.

The intense ultraviolet radiation emitted by the first galaxies destroyed the remaining hydrogen atoms by ionizing them (knocking out their electrons), making it difficult for this gas to cool and form new stars.

The process of galaxy formation ground to a halt and no new galaxies were able to form for the next billion years or so. Eventually, the halos of dark matter became so massive that even ionized gas was able to cool. Galaxy formation resumed, culminating in the formation of spectacular bright galaxies like our own Milky Way.

Dr. Sownak Bose, who was a Ph.D. student at the ICC when this work began and is now a research fellow at the Harvard-Smithsonian Center for Astrophysics, said: “A nice aspect of this work is that it highlights the complementarity between the predictions of a theoretical model and real data.

“A decade ago, the faintest galaxies in the vicinity of the Milky Way would have gone under the radar. With the increasing sensitivity of present and future galaxy censuses, a whole new trove of the tiniest galaxies has come into the light, allowing us to test theoretical models in new regimes.”

Dr. Alis Deason, who is a Royal Society University Research Fellow at the ICC, Durham University, said: “This is a wonderful example of how observations of the tiniest dwarf galaxies residing in our own Milky Way can be used to learn about the early Universe.”

Image credits: Institute for Computational Cosmology, Durham University, UK/ Heidelberg Institute for Theoretical Studies, Germany / Max Planck Institute for Astrophysics, Germany.

The Daily Galaxy via Durham University

Most Viewed Space & Science Headlines (2018)

Artificial Intelligence Is Already Out There, and It’s Billions of Years Old” (WATCH Video)

Ghost Signals’ of Extraterrestrial Civilizations Haunt the Milky Way –Suggests the New Drake Equation (WATCH Video)

“Odds That There has Never Been Another Civilization in the Universe One in Ten Billion Trillion” –A Joe Rogan Interview

Stephen Hawking’s Great Question –“Why Isn’t the Milky Way Crawling With Mechanical or Biological Life?”

The Alien Observatory –“The Mystery of Where Extraterrestrial Life is Hiding Deepens”

“We’re Entering Uncharted Territory” –The Exoplanet Revolution May Reveal that Rise of Civilizations May Not be Unusual

“The Big Rip” –When Matter and Spacetime are Gradually Torn Apart Through Expansion of the Universe

Alien Ocean Worlds–“There May be Life There, but Could It be Technology-Based”

“Humans are the First to Arrive at the Interstellar Stage” –Physicist Answers the Fermi Paradox

NASA Scientists Seek Fossils of Ancient Mars’ Life –“Was There a Common Ancestor? Maybe We’re All Martians

"The Galaxy" in Your Inbox, Free, Daily