"Hiding in Plain Sight" –Neutron Stars Hint at Known Unknowns About the Dark Side of Our Universe | The Daily Galaxy

Favicon
By Editorial Team Published on August 27, 2018 20:08
1ac48e4151 1024x427
"Hiding in Plain Sight" –Neutron Stars Hint at Known Unknowns About the Dark Side of Our Universe | The Daily Galaxy - © The Daily Galaxy --Great Discoveries Channel

Posted on Aug 16, 2018 in Astronomy, Physics, Science, Space

“If we did discover exotic neutron decays, then we would in the same stroke also learn something amazing about the dark side of our universe—the survival of massive neutron stars would then immediately tell us that there isn’t just one dark matter particle, but a whole set of dark particles with their own dark forces.” said Jessie Shelton, physicist at the University of University of Illinois who has won awards from MIT and the LHC Theory Initiative working on a broad range of topics in particle physics beyond the Standard Model, with particular interests in dark matter, top quarks, and the Higgs boson.

According to University of Illinois physicist Douglas H. Beck, “Neutrons play some unusual roles in our world. Free neutrons decay in about 900 s but, bound in nuclei, they are stable and make up somewhat more than half the mass of the visible universe.”

In nuclei, the strong force provides the binding that overcomes the weak-interaction-decay of the free neutron, forming nuclei that have of order 102 neutrons. Neutron stars, containing some 1057 neutrons, form when the gravitational collapse of a supernova is stopped by the strong interaction. In this situation, the strong interaction is repulsive and balances the extreme gravitational forces associated with having a solar mass compressed into a city-sized object.

But exactly how long do free neutrons live? According to Beck, this question has been remarkably elusive to answer. “In fact, at the moment we seem to have two different answers,” says Beck.

Scientists use two different experimental methods to determine the value of τ, the neutron lifetime. Experiments that measure the products of neutron decay—protons, electrons, and neutrinos—tend to predict a longer lifetime than do experiments where the number of neutrons at a specific starting time and ending time are simply compared. In fact, despite intense effort on both fronts in recent years, the value of τ determined in the two types of experiments differs by about eight seconds, with uncertainties of about two seconds. As experiments have gotten more and more precise, the discrepancy could indicate new physics, not just experimental error. Physicists care, because they must know the precise neutron lifetime to test various cosmological models of the universe’s evolution.

In January, theorists Bartosz Fornal and Ben Grinstein at UC San Diego posited that the difference could be explained by an “invisible” decay missed by the decay-product experiments; namely, that some 1 percent of the time, neutrons decay to dark matter particles that go undetected. Remarkably, the stability of ordinary nuclei does not completely rule out such a possibility.

This idea of a new decay process is appealing to physicists, because it could account for the dark matter present in the universe. While the existence of dark matter, having gravitational but not ordinary electromagnetic, strong or weak interactions, is beyond dispute, its origin and composition is unknown. That dark matter could be “hiding in plain sight” in terrestrial neutron decay experiments sparked intense interest by physicists and a number of stories in the popular press earlier this year.

However, as shown in a paper by Gordon Baym, Doug Beck, Peter Geltenbort (ILL, France) and Jessie Shelton, to be published in Physical Review Letters, the physical properties of observed neutron stars effectively rule out the possible decay of neutrons to dark matter particles.

The physics argument has two pieces. Neutrons have a spin of ½ h-bar, i.e., they are fermions, and to conserve angular momentum, at least one of the possible decay products would also have to be a fermion. Even though the decay of neutrons to dark-matter particles would be relatively rare in the Fornal–Grinstein picture, over the life of a neutron star, the neutrons and dark fermions would come to equilibrium, leaving two fermion species in place of the one that was originally there. The so-called degeneracy pressure that prevents two fermions from being in the same place at the same time would thus be reduced.

Furthermore, the interactions between dark particles themselves are expected to be very weak. The strong repulsion of neutrons required to withstand the intense gravitational pressure inherent in neutron stars would therefore also be substantially reduced. The authors conclude that the maximum mass of a hybrid neutron–dark-matter star would be only about 0.7 times the mass of the sun, contradicting the observations of numerous neutron stars having masses up to about two solar masses.

Jessie Shelton points out, however, that if the dark fermions were to have some sort of exotic self- interactions, it would be possible to have both neutron decays and neutron stars of the observed two solar masses, because these interactions would provide the missing component of pressure to hold up the neutron star.

The picture at the top of the page was created from images from telescopes on the ground and in space tells the story of the hunt for an elusive missing object hidden amid a complex tangle of gaseous filaments in one of our nearest neighboring galaxies, the Small Magellanic Cloud. The reddish background image comes from the NASA/ESA Hubble Space Telescope and reveals the wisps of gas forming the supernova remnant 1E 0102.2-7219 in green. The red ring with a dark center is from the MUSE instrument on ESO’s Very Large Telescope and the blue and purple images are from the NASA Chandra X-Ray Observatory. The blue spot at the center of the red ring is an isolated neutron star with a weak magnetic field, the first identified outside the Milky Way.

The Daily Galaxy via University of Illinois at Urbana-Champaign

Image credit: Credit: X-ray (NASA/CXC/ESO/F.Vogt et al); Optical (ESO/VLT/MUSE & NASA/STScI)

Most Viewed Space & Science Headlines (2018)

Artificial Intelligence Is Already Out There, and It’s Billions of Years Old” (WATCH Video)

‘Ghost Signals’ of Extraterrestrial Civilizations Haunt the Milky Way –Suggests the New Drake Equation (WATCH Video)

“Odds That There has Never Been Another Civilization in the Universe One in Ten Billion Trillion” –A Joe Rogan Interview

Stephen Hawking’s Great Question –“Why Isn’t the Milky Way Crawling With Mechanical or Biological Life?”

The Alien Observatory –“The Mystery of Where Extraterrestrial Life is Hiding Deepens”

“We’re Entering Uncharted Territory” –The Exoplanet Revolution May Reveal that Rise of Civilizations May Not be Unusual

“The Big Rip” –When Matter and Spacetime are Gradually Torn Apart Through Expansion of the Universe

Alien Ocean Worlds–“There May be Life There, but Could It be Technology-Based”

“Humans are the First to Arrive at the Interstellar Stage” –Physicist Answers the Fermi Paradox

NASA Scientists Seek Fossils of Ancient Mars’ Life –“Was There a Common Ancestor? Maybe We’re All Martians


Image composition showing all the ESO observatories and the Headquarters.

No comment on «"Hiding in Plain Sight" –Neutron Stars Hint at Known Unknowns About the Dark Side of Our Universe | The Daily Galaxy»

Leave a comment

Comments are subject to moderation. Only relevant and detailed comments will be validated. - * Required fields