Today’s Top Science Headline: “Maybe We’re Going About It All Wrong” –Behavior of Galaxies and Clusters Don’t Fit Predictions of General Relativity | The Daily Galaxy

Favicon
By Editorial Team Published on May 16, 2018 16:10

Posted on May 4, 2018

 

For decades, astronomers have noticed that the behavior of galaxies and galaxy clusters doesn’t seem to fit the predictions of general relativity. Dark matter is one way to explain that behavior. Likewise, the accelerating expansion of the universe can be thought of as being powered by a dark energy.  “The business of alternative gravity theories is a messy one,”  said said Anne Archibald, an astrophysicist at the University of Amsterdam. "Some would-be replacements for general relativity, like string theory and loop quantum gravity, don’t offer testable predictions. Others “make predictions that are spectacularly wrong, so the theorists have to devise some kind of a screening mechanism to hide the wrong prediction on scales we can actually test."

All attempts to directly detect dark matter and dark energy, continues Katia Moskvitch in Quanta Magazine, have failed, however. That fact “kind of leaves a bad taste in some people’s mouths, almost like the fictional planet Vulcan,” said Leo Stein, a theoretical physicist at the California Institute of Technology. “Maybe we’re going about it all wrong?

The best-known alternative gravity theories are known as modified Newtonian dynamics, commonly abbreviated to MOND. MOND-type theories attempt to do away with dark matter by tweaking our definition of gravity. Astronomers have long observed that the gravitational force due to ordinary matter doesn’t appear to be sufficient to keep rapidly moving stars inside their galaxies. The gravitational pull of dark matter is assumed to make up the difference.

But according to MOND, there are simply two kinds of gravity. In regions where the force of gravity is strong, bodies obey Newton’s law of gravity, which states that the gravitational force between two objects decreases in proportion to the square of the distance that separates them. But in environments of extremely weak gravity — like the outer parts of a galaxy — MOND suggests that another type of gravity is in play. This gravity decreases more slowly with distance, which means that it doesn’t weaken as much.

“The idea is to make gravity stronger when it should be weaker, like at the outskirts of a galaxy,” Zumalacárregui said.

Graphic illustration depicting the mystery of galactic orbits: According to Newton and Einstein Gravitational pull decreases in proportion to distance squared, and so stars far from a galaxy’s massive center (B) should feel much less gravitational pull — and orbit more slowly — than stars closer to the center (A). Observed behavior Stars’ velocities do drop as predicted by Newton and Einstein, but beyond a certain distance from the galaxy’s center their velocities mysteriously level off. Dark matter Giant dark matter “halos” could give extra gravitational acceleration to outlying stars, flattening galaxy rotation curves. MoND Modified Newtonian dynamics posits that below a certain level, gravity switches from an inverse-square law to one that matches galaxy rotation curves.

Then there is TeVeS (tensor-vector-scalar), MOND’s relativistic cousin. While MOND is a modification of Newtonian gravity, TeVeS is an attempt to take the general idea of MOND and make it into a full mathematical theory that can be applied to the universe as a whole — not just to relatively small objects like solar systems and galaxies. It also explains the rotation curves of galaxies by making gravity stronger on their outskirts. But TeVeS does so by augmenting gravity with “scalar” and “vector” fields that “essentially amplify gravity,” said Fabian Schmidt, a cosmologist at the Max Planck Institute for Astrophysics in Garching, Germany. A scalar field is like the temperature throughout the atmosphere: At every point it has a numerical value but no direction. A vector field, by contrast, is like the wind: It has both a value (the wind speed) and a direction.

There are also so-called Galileon theories — part of a class of theories called Horndeski and beyond-Horndeski — which attempt to get rid of dark energy. These modifications of general relativity also introduce a scalar field. There are many of these theories (Brans-Dicke theory, dilaton theories, chameleon theories and quintessence are just some of them), and their predictions vary wildly among models. But they all change the expansion of the universe and tweak the force of gravity. Horndeski theory was first put forward by Gregory Horndeski in 1974, but the wider physics community took note of it only around 2010. By then, Zumalacárregui said, “Gregory Horndeski [had] quit science and [become] a painter in New Mexico.”

There are also stand-alone theories, like that of physicist Erik Verlinde. According to his theory, the laws of gravity arise naturally from the laws of thermodynamics just like “the way waves emerge from the molecules of water in the ocean,” Zumalacárregui said. Verlinde wrote in an email that his ideas are not an “alternative theory” of gravity, but “the next theory of gravity that contains and transcends Einstein’s general relativity.” But he is still developing his ideas.

“My impression is that the theory is still not sufficiently worked out to permit the kind of precision tests we carry out,” Archibald said. It’s built on “fancy words,” Zumalacárregui said, “but no mathematical framework to compute predictions and do solid tests.”

The predictions made by other theories differ in some way from those of general relativity. Yet these differences can be subtle, which makes them incredibly difficult to find.

Consider the neutron-star merger. At the same time that the Laser Interferometer Gravitational-Wave Observatory (LIGO) spotted the gravitational waves emanating from the event, the space-based Fermi satellite spotted a gamma ray burst from the same location. The two signals had traveled across the universe for 130 million years before arriving at Earth just 1.7 seconds apart.

These nearly simultaneous observations “brutally and pitilessly murdered” TeVeS theories, said Paulo Freire, an astrophysicist at the Max Planck Institute for Radio Astronomy in Bonn, Germany. “Gravity and gravitational waves propagate at the speed of light, with extremely high precision — which is not at all what was predicted by those [alternative] theories.”

The galaxy cluster MS 0735.6+7421 (shown at the top of the page) is being ripped apart by a huge explosion radiating outwards from a supermassive black hole at its center. The hot gas (pictured in blue) surrounding the cluster can be seen with cavities created by radio waves thrown out by the explosion (shown in pink). (NASA/University of Waterloo/A. Vantyghem)

Continue reading…

Most Popular Space & Science Headlines

Stephen Hawking's Great Question –"Why Isn't the Milky Way Crawling With Mechanical or Biological Life?"

"Alien Minds" –'Artificial Intelligence Is Already Out There, and It's Billions of Years Old' (VIDEO)

"Point of No Return" –MIT Scientist Predicts the Event Horizon for Earth's 6th Mass Extinction 

A Neutron Star Collision in Our Milky Way Neighborhood Could Destroy Earth

 "300-Million Nuclear Bombs" –New Insights Into Global Impact of Titanic Chicxulub Mass-Extinction Event

Stephen Hawking: Wake Up, Science Deniers! –"Earth is Morphing into Venus" (WATCH Today's 'Galaxy' Stream)

"Evolutionary Leap?" AI is Mimicing the Human Brain –"But Several Orders of Magnitude Faster and More Efficiently

China Creates a Laser of Mind-Boggling Power –"Could Rip Space Asunder, Breaking the Vacuum"

"Stop Saying That Dinosaurs Went Extinct. They Didn't"

No comment on «Today’s Top Science Headline: “Maybe We’re Going About It All Wrong” –Behavior of Galaxies and Clusters Don’t Fit Predictions of General Relativity | The Daily Galaxy»

Leave a comment

Comments are subject to moderation. Only relevant and detailed comments will be validated. - * Required fields