Quantum Gravity –New Insights Revealed Into this Great Unsolved Mystery (VIDEO)

 

  60ee127b1498279f2dfac7cb9cdc978a

 

Cosmologists trying to understand how to unite the two pillars of modern science – quantum physics and gravity – have found a new way to make robust predictions about the effect of quantum fluctuations on primordial density waves, ripples in the fabric of space and time.


Researchers from the University of Portsmouth have revealed quantum imprints left on cosmological structures in the very early Universe and shed light on what we may expect from a full quantum theory of gravity. Dr Vincent Vennin, from the Institute of Cosmology and Gravitation said: "We haven't solved quantum gravity but we've learnt a little more about how it would work.

 

"Physicists do not yet know how to combine theories of gravity and the quantum world. Yet both play a crucial role in the very early Universe where the expansion of space is driven by gravity and cosmological structures that arise from quantum fluctuations.

While there are many challenges facing modern particle physics, perhaps the ultimate one (and certainly among the most difficult) is to describe the nature of gravity in the quantum realm. Despite a century of effort, scientists have had only the most cursory of success. The weakness of gravity compared to the other subatomic forces is a real mystery. While nobody knows the answer, one credible solution is that gravity has access to more spatial dimensions than the other three known forces. In this video, Fermilab's Dr. Don Lincoln describes this idea, with the help of some very urbane characters.

 

 

"Quantum fluctuations during inflation are thought to be the origin of all structure in the Universe. Structures we see today such as galaxies, stars, planets and people can be traced back to these primordial fluctuations."

The paper is co-authored by Professor David Wands and Dr Hooshyar Assadullahi. It was published today in the Physical Review Letters.

Explore further: Violations of energy conservation in the early universe may explain dark energy
More information: Critical Number of Fields in Stochastic Inflation. arxiv.org/abs/1604.06017

The Daily Galaxy via University of Portsmouth

Image credit: Orion Nebula, Dark Energy Survey

"The Galaxy" in Your Inbox, Free, Daily