NASA Observatory Reveals a Dark Zone –“Swarm of 10,000 Black Holes Have Migrated to Heart of the Milky Way”

 

Nustar151026a

 

A swarm of 10,000 or more black holes may be orbiting the Milky Way’s supermassive black hole, according to observations from NASA’s Chandra X-ray Observatory in 2015. This would represent the highest concentration of black holes anywhere in the Galaxy. These relatively small, stellar-mass black holes, along with neutron stars, appear to have migrated into the Galactic Center over the course of several billion years.


“The Center of our Milky Way Galaxy is a place of extremes,” says Mark Morris, an expert on The Galactic Center at UCLA. “For every star in our nighttime sky, for example, there would be a million for someone looking up from a planet near the Galactic center.”

 

The discovery was made as part of Chandra’s ongoing program of monitoring the region around Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, reported by by Michael Muno of the University of California, Los Angeles (UCLA) at a 2015 meeting of the American Astronomical Society.

Among the thousands of X-ray sources detected within 70 light years of Sgr A*, Muno and his colleagues searched for those most likely to be active black holes and neutron stars by selecting only the brightest sources that also exhibited large variations in their X-ray output. These characteristics identify black holes and neutron stars that are in binary star systems and are pulling matter from nearby companion stars. Of the seven sources that met these criteria, four are within three light years of Sgr A*.

“Although the region around Sgr A* is crowded with stars, we expected that there was only a 20 percent chance that we would find even one X-ray binary within a three-light-year radius,” said Muno. “The observed high concentration of these sources implies that a huge number of black holes and neutron stars have gathered in the center of the Galaxy.”

Mark Morris, also of UCLA and a coauthor on the present work, had predicted a decade ago that a process called dynamical friction would cause stellar black holes to sink toward the center of the Galaxy. Black holes are formed as remnants of the explosions of massive stars and have masses of about 10 suns. As black holes orbit the center of the Galaxy at a distance of several light years, they pull on surrounding stars, which pull back on the black holes.

Among the thousands of X-ray sources detected within 70 light years of Sgr A*, Muno and his colleagues searched for those most likely to be active black holes and neutron stars by selecting only the brightest sources that also exhibited large variations in their X-ray output. “Although the region around Sgr A* is crowded with stars, we expected that there was only a 20 percent chance that we would find even one X-ray binary within a three-light-year radius,” said Muno. “The observed high concentration of these sources implies that a huge number of black holes and neutron stars have gathered in the center of the Galaxy.”

 

6a00d8341bf7f753ef01bb0903eabe970d.jpg

The images above are part of a Chandra program that monitors a region around the Milky Way’s supermassive black hole, Sagittarius A* (Sgr A*). Four bright, variable X-ray sources (circles) were discovered within 3 light years of Sgr A* (the bright source just above Source C). The lower panel illustrates the strong variability of one of these sources. This variability, which is present in all the sources, is indicative of an X-ray binary system where a black hole or neutron star is pulling matter from a nearby companion star.

“Stars are packed quite close together in the center zone,” says Morris. “Then, there‚Äôs that supermassive black hole that is sitting in there, relatively quiet for now, but occasionally producing a dramatic outpouring of energy. The UCLA Galactic center group been use the Keck Telescopes in Hawaii to follow its activity for the last 17 years, watching not only the fluctuating emission from the black hole, but also watching the stars around it as they rapidly orbit the black hole.”

Morris had predicted a decade ago that a process called dynamical friction would cause stellar black holes to sink toward the center of the Galaxy. Black holes are formed as remnants of the explosions of massive stars and have masses of about 10 suns. As black holes orbit the center of the Galaxy at a distance of several light years, they pull on surrounding stars, which pull back on the black holes. The net effect is that black holes spiral inward, and the low-mass stars move out. From the estimated number of stars and black holes in the Galactic Center region, dynamical friction is expected to produce a dense swarm of 20,000 black holes within three light years of Sgr A*. A similar effect is at work for neutron stars, but to a lesser extent because they have a lower mass.

Once black holes are concentrated near Sgr A*, they will have numerous close encounters with normal stars there, some of which are in binary star systems. The intense gravity of a black hole can induce an ordinary star to “change partners” and pair up with the black hole while ejecting its companion. This process and a similar one for neutron stars are expected to produce several hundreds of black hole and neutron star binary systems.

The black holes and neutron stars in the cluster are expected to gradually be swallowed by the supermassive black hole, Sgr A*, at a rate of about one every million years. At this rate, about 10,000 black holes and neutron stars would have been captured in a few billion years, adding about 3 percent to the mass of the central supermassive black hole, which is currently estimated to contain the mass of 3.7 million suns.

In the meantime, the acceleration of low-mass stars by black holes will eject low-mass stars from the central region. This expulsion will reduce the likelihood that normal stars will be captured by the central supermassive black hole. This may explain why the central regions of some galaxies, including the Milky Way, are fairly quiet even though they contain a supermassive black hole.

Today’s Most Popular

The Daily Galaxy via chandra.harvard.edu

Image top of page: nustar.caltech.edu

"The Galaxy" in Your Inbox, Free, Daily