“Black Holes Glow Like a Hot Body” –Stephen Hawking

Ngc1068

The mathematician Louis Crane proposed a scifi-like scenario back in 1994 that billions of years in the future, after all the stars have burned out, that small black holes could be created to generate heat and guarantee survival of the species.

Stephen Hawking's great discovery was that the mysterious regions in space we call black holes radiate heat through quantum effects. Hawking has said that "black holes are not really black after all: they glow like a hot body, and the smaller they are, the more they glow." Hawking's famous theory says that the temperature of a black hole varies inversely to its mass.


Meanwhile, in Hanover, New Hampshire a bold team of researchers at Dartmouth College proposed a new way of creating a reproduction black hole in the laboratory on a much-tinier scale than their celestial counterparts. The new method to create a tiny quantum sized black hole would allow researchers to better understand what physicist Stephen Hawking proposed more than 35 years ago: black holes are not totally void of activity; they emit photons, which is now known as Hawking radiation.

"Hawking famously showed that black holes radiate energy according to a thermal spectrum," said Paul Nation of Dartmouth's Department of Physics and Astronomy. "His calculations relied on assumptions about the physics of ultra-high energies and quantum gravity. Because we can't yet take measurements from real black holes, we need a way to recreate this phenomenon in the lab in order to study it, to validate it."

The researchers showed that a magnetic field-pulsed microwave transmission line containing an array of superconducting quantum interference devices, or SQUIDs, not only reproduces physics analogous to that of a radiating black hole, but does so in a system where the high energy and quantum mechanical properties are well understood and can be directly controlled in the laboratory.

"We can also manipulate the strength of the applied magnetic field so that the SQUID array can be used to probe black hole radiation beyond what was considered by Hawking," said Miles Blencowe, another author on the paper and a professor of physics and astronomy at Dartmouth.

"In addition to being able to study analogue quantum gravity effects, the new, SQUID-based proposal may be a more straightforward method to detect the Hawking radiation," says Blencowe.

In a paper published in the August 20 issue of Physical Review Letters, the flagship journal of the American Physical Society

The Daily Galaxy via http://www.dartmouth.edu/~news

"The Galaxy" in Your Inbox, Free, Daily